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Introduction

* Key routesto improving the oxidation lifetime of

high-temperature alloys are:
—facilitate the rapid establishment of an a-Al,O, scale
—maximize its adhesion to the alloy substrate
—minimize its rate of growth

e Approaches of interest:
—addition of ‘reactive’ elements(e.q. Y, Zr, Hf, La...)
—minimizing effects of indigenous S content

* Procedur es used:

—modd alloys (superalloys and bond coatings)

—Isothermal and cyclic oxidation; characterization by optical
microscopy, SEM and EPMA; TEM of scales and interfaces



Alloys of Interest

e Alumina scale-forming alloys
—wrought alloys, e.g. Haynes 214 (Ni-16Cr-4.5Al-3Fe +Y ,Zr) wt%
—superalloys, e.g. René N5 (Ni-7.5Cr-6.5A1-Co, Ta,W,Re,Mo,Hf+Y)
—TBC bond coating alloys, e.g. b-(Ni,Pt)Al; MCrAlYs

* Model Alloys
- b-NiAl + Zr Hf
—MCrAls+ Y Hf based on

e Ni-7Cr-6.5Al
* Ni-20Cr-10Al



B-NiAl—model alumina-former

With RE addition I ‘ideal’ alumina-former

—o transient oxides, very adherent, slow-growing scale
—used as a reference standard

 Effectiveness. Hf > Zr >Y
* Optimizing the RE effect requires:

—uniform distribution (Ni-rich precipitates are detrimental)
— correct’” amount
« over-doping increases oxidation rate
* minimum level-possibly set by RE ‘availability’ (S effect)
—solid solubility of the RE is an important consideration
* For ‘correctly-doped’ model alloys, Hf-doping
leads to a sSlower rate of scale growth
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Hf/Y-doping of NIiCrAl model alloys

16-

1.2-

0.4f

004

De-S, Undoped

D__,D,’-D
De-S, Hf-doped

)
S

As-cast, Y -doped
(120 ppmay)
04 As-cast, undoped
-0.8 - /
12|  As-cast, Hf-doped
(1060 ppma Hf) Ni-7Cr-6.5Al
16 - ‘/ Cr-6.5
0 100 200 300 400 500

Number of 1h Cyclesat 1150°C

e as cast, Hf only
marginally effective

* 500 ppmaY forms Ni, Y
phases
e significant iImprovement,
vsY or Hf alone, by:
—desulfurizing (H,)

—co-doping with Hf +Y
(solubility argument?)
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Co-doping of model NiCrAl alloys
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*René N5*:
— 34 ppmaY
— 537 ppma Hf

—Y added for oxidation
resistance

—Hf added to improve
mechanical properties

—C>Hf
*Haynes 214.
—25 ppma’Y

— 120 ppma Zr
—-C>>2Zr



Desulfurization effects obvious in cyclic
oxidation behavior of René 5 variants
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Relative levels of ‘excess’ Hf In
René N5 variants

Alloy S, ppma C, ppma
René N5+b 7.5 2,494
N5A b 5.5 2,467
N5B¢ 2.1 4,449
N5Cd 1.8 5,282
NSAHd 1.1 24

a XS HF = Hf/(C+1/20+N)

Hf, ppma
537
398
159
137
169

b analysis by plasma-coupled arc, not GDMS

¢contains 34 ppmaY (30 ppmafreeY)

dGDMS analysis

XS Hf?
0.21¢
0.16
0.04
0.03
3.36



Decarburized René N5 exhibits slower
oxidation rate than Y-containing alloy
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Scale morphology on decarburized
alloy resembles that associated with
RE doping




Increased S and C levels also have
large effects on Hf-doped pB-NiAl
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Conclusions

* RE effectiveness depends on having a uniform distribution
and a sufficient amount (i.e. in solution, not as intermetallic
particles)

» Co-doping (e.g. Hf +Y) may simply provide a means of
obtaining sufficient RE in solid solution (N5*: Hf <<V
Haynes 214. Zr <<Y)

* Possible synergistic effects of co-doping? —none seen

* Y has obvious beneficial effects on scale adherence (S?), on
the scale morphology, and on the mode of growth/growth rate



Conclusions-2

« Hf can exhibit same (or more powerful) effectsas 'Y, but
these are greatly reduced in the presence of sufficient C to
form HfC, or at high Slevels

« Commercial alloys appear to exploit these issues, and use
low levels of RE additions to achieve excellent oxidation
resistance; however:

—in René N5*, C > Hf, and the Hf ‘ RE effect’ is+not active Y is
needed to counteract S

—1in Haynes 214, C>> Zr, but Zr and Y appear to be ‘active’
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