Progress in New Thermoelectric
Materials

Fall 2004 MRS Meeting, Boston MA
Symposium S 4.5

Brian Sales
Correlated Electron Materials Group
Oak Ridge National Laboratory
Oak Ridge, TN

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE




Basic Facts About Thermoelectric Devices

e All solid-state devices (no moving parts except electrons)
e Can be used for refrigeration or power generation

e Refrigeration with no chemical refrigerant (such as Freon)
e Major advantage: reliable and quiet

e Major disadvantage: poor efficiency

o Efficiency determined by figure of merit ZT, depends only on
material properties

e ZT =S2To/x, where S = Seebeck coefficient, ¢ is electrical
conductivity, and « is the thermal conductivity
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Thermoelectric Couples for Refrigeration or Power
Generation.

ZT =T S20/k
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For Power generation:
(T T Mocaad)
(Te +7T4)

Efficiency =

For Refrigeration:
(7/Tc - Th)
Ol —==Toith )

where y = J(1+ ZT)

COP =
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Thermoelectric Modules are Used to Power
NASA’s Cassini Probe to Saturn and Jupiter
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Some of amazing images from Cassini !
(Lifted from NASA web page)
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Thermoelectric Refrigerator (lgloo, Wallmart)

Holds 72 12-ounce
cans-(44F below ambient)
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Limitations of “True Intermetallic Compounds”
(=good metals) as Thermoelectric Elements:

ZT =T S /kp
K  =K¢ T Kiattice

Best Case, Suppose K, ¢ice = 0

Then ZT =T S?/x,, p
But for a good metal the Wiedemann-
Franz law holds
and
L, = K, p/T= 2.4 x 108 V2/K?
or ZT = 8?/ L,
which means that for ZT=1,
or S > 156 uV/K
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“Best” Thermoelectrics Among Mixed

Valence Intermetallics
(Physics Today, March 1997)
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“State-of-the-art” Thermoelectric Materials

1 I5 i T T T I T T I T T T I ) ) ) l ) ) ) I ) I
i < ORNL Mate%
oom
Jemperature CeFe4_x CObe12

-
N
. 1 F Bi,Te, -
| &9
(<))
=
Y
o
()] |
05 | :
=2 -
LL K

0 [ 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1

0 200 400 600 800 1000 1200 1400

T(K
OAK RIDGE NATIONAL LABORATORY ( )
U. S. DEPARTMENT OF ENERGY UT-BATTELLE




Why finding a “good thermoelectric” (ZT > 1) is hard!
(Physics Today, March1997)
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New Classes of Promising Metalloid
Thermoelectric Materials (bulk) Most ZT values
good above room temp:

o Filled skutterudites, e.g. CeFe,Sb,,, Yb, CoSb,
-ZT = 1.2, T= 600-900K

o Half-Heusler Alloys: e.g. TiNiSn, ZrNiSn
ZT=0.7,800K

e Semiconducting Clathrates, e.g SrgGa,(Ge;, ZT =
1, T=700 K

e Complex Bi chalcogenides CsBi,Teg, ZT=0.8 , T =
225 K

e Cubic Ag-Pb-Sb-Te bulk compounds-may have =
epitaxial nanocrystal inclusions, ZT = 2.2 at 800 K
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Another Approach: Thin Films, Wires and
Superiattices
Proposed by Dresselhaus group starting 1993
Lower dimensionality can result in:

e Enhancement in density of states near Fermi
energy which leads to larger Seebeck coefficient

e Exploit anisotropic Fermi surfaces in cubic
multivalley semiconductors

e In nano-structured superlattices, boundary
scattering can effect phonons more than
electrons (or holes)
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PbTe Superlattice with PbSeTe nanodots
grown with Molecular Beam Epitaxy has ZT=2
at room temperature

Superlattice Clathrate

Harman et al. Science PbTe —p A

297 (2002) 2229 ~———

PbSeTe —h_ A A A A A
quantum o o & 4 A 4
dots

A A A A A A
PbTe buffer

100 nm

BaF, substrate

Promising new materials. (Left) Nanoengineered ther-
moelectric materials of this kind are prepared with molec-
ular beam epitaxy. (Right) In this model clathrate crystal
structure, the cubic crystal structure is composed of two
types of polyhedra that consist of clusters of 20 or 24
atoms. In self-assembled structures of this type, nature
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ZT = 2.2 Bulk Sample of AgPb,3SbTe,,

(Kanatzidis group- Science, Feb 2004)

Fig. 3. Variable-temperature charge transport
and thermal transport data for AgPb,,SbTe,:
(A) Electrical conductivity
mopower (S). (B) Total thermal conductivity
(k) in the range 300 to 800 K. The data were
obtained as described in (79). (C) Ther-
moelectric figure of merit, ZT, as a function

of temperature.
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High ZT values may be related to nanocrystal
inclusions. Implication: It may be possible to
reproduce the high ZT values of MBE films
using bulk processing techniques!

rw oo
e

o

Fig. 4. (A) TEM image of a AgPb, ,SbTe,, sample showing a nano-sized region (a "nanodot”
shown in the enclosed area) of the crystal structure that is Ag-Sb-rich in composition. The
surrounding structure, which is epitaxially related to this feature, is Ag-Sb—poor in composition
with a unit cell parameter of 6.44 A, close to that of PbTe. (B) Compositional modulations over
an extended region of a AgPb,,SbTe,, specimen. The spacing between the bands is ~20 to 30
nm. In essence, the observed compositional modulation is conceptually akin to the one found
in the artificial PbSe/PbTe superlattices (75). In the latter, the compositional modulation exists
at least along the stacking direction.
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Recent Interest in Na,CoO, Materials as

Thermoelectrics
Terasaki et al. Phys. Rev. B56, R12685 (1997)

e This material violates most of the “traditional
rules” for finding a good thermoelectric (heavy
atoms, small electronegativity differences, no
magnetic elements)

e However oxides are attractive since they are
stable in air at elevated temperatures
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Data on Na, -Co0O, from Terasaki’s Original
Paper. Good oxide thermoelectric ! Violates
“conventional wisdom?”
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Na,CoO, Crystals Have Good
Thermoelectric Properties at High
Temperatures ! Why?

K. Fujita et al.
Jpn. J. Appl. Phys.
40 (2001) 4644
polycrystal ’
o ———
‘l A
600 800
Temp. (K)
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Layered Hexagonal Structure of Na, ,;C00,
Mixed Co Valence 3.25

Two Partially Occupied Na Sites (Na1 = 0.25,Na2 = 0.5)
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Is this structure important for a good CoO,
based thermoelectric material ? Apparently YES
since several other layered hexagonal Cobalt
oxides also have high £T values :

Bi, Pb,Sr,Co,0,
Ca;Co,O,

TiISr,Co,0,
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Possible origin of high Thermopower in
Hexagonal CoO, Layers: Entropy current
as carrier moves between Co*3 and Co*4

configurations.

Co* é Co*4

Ietzgls + * é + +
S=0, g, =1 S=1/2,9,
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Thermopower at high temperature due to configurational
Entropy Current Calculated By:
Koshibe et al. PRB 62, 6869 (2000)

S = -kgle In{( gs/g,) (x/1-x)},

where x is fraction of Co4tions

TABLE 1. The ratio g5 /g4 in Eq. (13) in the cases (i)—(v). The
obtained values of thermopower QO at x=0.5 are also presented.

Co’™* Co** g3/, O(x=0.5)
(1) HS HS 15/6 —79 uV/K
(i1) HS+LS HS 16/6 —84 uV/K
(111) LS HS+LS 1/12 214 uV/K
(iv) LS LS /6 154 wVIK
(v) HS+LS+IS HS+LS+IS 34/36 5 uV/K
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