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1.  INTRODUCTION

Hyperspectral remote sensing is an emerging technology with the potential to identify plant species, map
vegetation, characterize soil properties, identify contamination, classify ecological units and habitat
characteristics, and differentiate causes of vegetation stress.  The main benefit of this project, both to the
DOE Fossil Energy Program and to the petroleum industry, will be an improved ability to provide
detailed environmental data for a region, rapidly, at low cost.  Increasingly, environmental data are
needed to assess present conditions of lands owned, leased or managed by petroleum companies, and to
characterize and quantify changes in the environmental conditions of these lands through time.  Present
methods of assessing large areas depend extensively on field surveys, which can take weeks or months
to complete.  Such methods are inconvenient and can be expensive.  Further, some areas that are
inaccessible or very large are difficult or virtually impossible to monitor accurately using field-survey
techniques only.  Hyperspectral sensing can be used to: identify plant species, map vegetation,
characterize soil properties, identify contamination, classify ecological units and habitat characteristics,
and differentiate causes of vegetation stress.  The petroleum industry needs reliable analysis tools for
rapid quantitative measurements and identification of type of stress causing environmental impact.

The oil industry is responsible for large tracts of land all over the world, used for production, refining, or
marketing.  If this project is successful at developing appropriate algorithms for the oil industry, remote
sensing offers tremendous opportunities for the industry.  Although many algorithms have been and are
being developed, their focus is primarily on resource management (forest fires) and agriculture (crop
nutrient and water needs).  Algorithms needed by the oil industry (identification of hydrocarbons and
differentiation of different types of stress relevant to our operations) are not currently available.   With
remote sensing, there is the ability to reduce the time to acquire important environmental information
from months to days.  Further, the data acquired can have a resolution of meters as opposed to current
field monitoring, where sampling sites often are tens of meters apart.  Remote data can be collected on a
regular basis through time to detect and quantify environmental change.  Regular data collection has a
huge impact on the ability of the oil industry to baseline and monitor environmental issues.  By
understanding environmental conditions, capital and remediation projects can be accelerated, saving
millions of dollars.  By monitoring conditions more closely and in a more timely manner, we can
improve management and protection of the environment.

An approximate estimate of the cost of current field monitoring is $20,000/acre.  The cost of HyVista
hyperspectral imagery is about $60 K for 80,000 acres (324 square km).  Using commercial software
(ENVI), preliminary analysis of the measurements to produce geobotanical maps costs $10 K.  Thus,
after R&D is completed, the total cost of producing geobotanical maps may be about $1/acre.  Advanced
methods using satellite data may be able to reduce the cost of hyperspectral imagery component of the
total cost.

Produced water is the largest volume waste product in upstream activities.  The oil industry needs low
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cost accurate methods to quickly detect environmental discharges of produced water in oil fields that
they operate or plan to purchase.  DOE is supporting this project because it is developing an important
environmental monitoring technique that does not currently exist.

2.  SITE SELECTION

The US Geological Survey (USGS), the USDA Agricultural Research Service (ARS), and ORNL are
collaborating to develop remote (airplane or satellite) hyperspectral sensor techniques to identify areas
impacted by oil production.  This is the final year of a multiyear project.  Initially the project was
focused on an oil spill site at the Jornada Experimental Range near Las Cruces, NM.  New methods were
developed to analyze hyperspectral field data measurements that were collected at Jornada.  This year
our focus shifted to Osage county, OK, which is the Osage Indian Reservation and has been a major oil
producing area (38,500 oil wells) since 1896.   The county is large (2,260 square miles) and 1,480
square miles are within a quarter mile of an oil well.  The Osage Nation owns the mineral rights and
there are 500 independent operators in the county.  Many areas in the county have brine scars or
weathered oil pits (The USGS has sample photographs:
http://ok.water.usgs.gov/skiatook/Skiatook.Photo.html).  The objective of the project was to collect
hyperspectral remote data in selected regions of Osage county and analyze the data to detect brine scars,
oil pits, and plant stress associated with brine and oil.

In November 2002, the USGS and ORNL visited Osage County to select potential regions to image.
The USGS has been conducting research at two sites (Site A and Site B) that are adjacent to Skiatook
Lake and owned by the Army Corps of Engineers.  We selected the 2 USGS sites, 6 sites on the John
Zink Ranch, 4 sites on the Tallgrass Prairie Preserve (owned by the Nature Conservancy), and 5 sites on
the Bluestem Ranch.

ORNL selected the HyVista Corporation (http://www.hyvista.com/) to measure the hyperspectral data.
In May 2003, ORNL contacted HyVista and requested that they collect images of seven regions that
total 39 square kilometers.  One of the seven regions is shown in Figure 1.  The red markers on the
figure are Global Positioning System (GPS) waypoints that were measured during the field visit in
November 2000.  The region in Figure 1 includes USGS Site B (114), and three Zink Ranch sites: 115,
124-125, and 126-127.  On October 12, HyVista made the images.  On October 27 and 28, a team from
the USGS, ARS, and ORNL measured hyperspectral field data at 13 sites in the seven areas where the
remote data was measured.

On November 10, ORNL received the data from HyVista.  HyVista created a flight path that imaged
three regions with overlapping strips.  Each strip is 512 three-meter-pixels wide, for a total of 1536
meters.  The North region has three strips with a total length of 12 km and a total area of 18 square km.
The South region has 6 strips with a length of 69 km and an area of 106 square km.  The West region
has 5 strips with a total length of 40 km and an area of 61 square km.  The total area is 185 square km.
The data was received on five DVD and totals 14.4 gigabytes.  The latitude and longitude of each pixel
was provided.  ORNL verified that the data covered our 7 study regions.
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Figure 1.  Selected region for Site B and three of the Zink Ranch sites.

The HyVista data has 126 spectral bands.  Using three of the bands we can create the color images in
Figures 2 and 3 (which cover the same region as Figure 1).
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Figure 2.  Three band HyVista image of the three Zink Ranch sites on the left side of Figure 1.

Figure 3.  Three band HyVista image of Site B on the right side of Figure 1.
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3.  ANALYSIS

Our objective is to group hyperspectral measurements into as many distinct classes as possible.
Richards and Jia [1] draw the distinction between information classes and spectral classes, where
information classes are human classifications and spectral classes are groups or clusters of
measurements made by a computer.  A botanist uses many features to classify a plant in a particular
information class: leaf type (flat, needle, deciduous, succulent), leaf geometry, attributes of branches,
flowers and seeds, and smell.  A hyperspectral reflectance measurement consists of hundreds of numbers
that can range between zero and one.  Spectral classes are groups of measurements with similar values
for their reflectance spectra.

Hyperspectral sensors measure radiance and the data can be transformed to reflectance.  For each of N
spatial measurements, we transform the data by subtracting the mean of the M spectral values and
normalizing to unit length.  After the transformation, the data [ ija , where i = 1, M and j = 1, N] have the
following properties: the spectral sum of data values is 0 and the spectral sum of the squares of the data
values equals 1.

ija
i

∑ =0 (1)

ij
2a

i
∑ = 1 (2)

The components of the correlation matrix ( jkc ) are the correlation coefficient between the spectrum at
pixel j and the spectrum at pixel k:

jkc = ija ika
i

∑  . (3)

For hyperspectral data, the correlation matrix can be huge (If the data has millions of pixels, the full
correlation matrix will have trillions of elements).  Ultimately, we need to calculate the correlation
matrix between a few measurements that will be the root vectors for the clusters and all of the
measurements (a matrix with 100 rows and 100,000 columns).  Iterative methods can be used to screen
the measured vectors and find candidates for the root vectors.
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The Euclidean distance ( jkd ) between two measurements is defined by:

2
jkd( ) =

2
ija - ika( )

i
∑ . (4)

Using (2) and (3), the Euclidean distance is directly related to the components of the correlation matrix

2
jkd( ) = 2 1- jkc( )  . (5)

We will define the correlation cutoff parameter ( ε ) by:

ε = min jkc⎡⎣ ⎤⎦  . (6)

Our clustering algorithm depends on two parameters, the correlation cutoff ( ε ) and the minimum
number of members in a cluster ( cn ).  For each value of the correlation cutoff, we can define the set of

spectral neighbors ( kψ ) for each spatial measurement point:

kψ = j | j ∈ 1,N[ ] , jkc > ε{ } (7)

Since the limits on the correlation coefficient are ±1, the correlation cutoff will be in the interval [-1,1].
For a sufficiently large correlation cutoff, all of the neighborhoods ( kψ ) will have one member (the
point k).  For a sufficiently small correlation cutoff, all of the neighborhoods will have all N points.
When the correlation cutoff is given, no iterations are required to calculate the members of each
neighborhood.

We start with an arbitrary root vector and calculate the correlation coefficients with all of the other
vectors.  We can count the members of the neighborhood.  If there are more than cn  members, we have
a cluster.  To choose the next root vector, we look for a vector that is not close to any of the current root
vectors.  We need a criterion for "not close".  Each cluster is a ball in an M dimensional space with a
radius of r.  A necessary condition for two spheres to be non-overlapping is that the distance between
their root vectors must be at least 2 r.  A necessary condition for many spheres to be non-overlapping is
that the minimum distance between all possible root vectors must be at least 2 r.  Using Eq. (5), when
the radius is doubled, the right side of the equation will increase by a factor of four.  Thus, criterion for
"not close" is that the next root vector will have a correlation with all of the current root vectors that is

less than εa, where εa is defined by: aε = 1 − 4 1 − ε( ) .  The results in this report were calculated using an

erroneous version of Eq. (5), in which the right side of the equation was not squared.  Consequently, we
concluded that the factor of four was a factor of two.  Empirically, we found that the factor of two was
not sufficient and used a value of 2.8.  Since we had a larger value of "not close", we are reporting
results with more clusters than we will find when we repeat the calculation using the factor of four.

We are attracted to the terminology for human population patterns on the surface of the Earth.  A cluster
is like a neighborhood in a large city or a subdivision in a rural county.  The next larger unit is the group,
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which is analogous to a city or county.  The largest unit is the domain, which is analogous to a state,

country, or the world.  We define two additional correlation cutoffs: group (εg) and domain (εd).  If the

correlation between a measurement and a root vector is greater than εg, the measurement is in the group

of the root vector.  If the correlation is greater than εd, the measurement is in the domain of the root

vector.  We assume that: ε >  εa >  εg  > εd.  In this report, we have used the domain correlation cutoff to
exclude measurements that corresponded to reflection from water.

Each cluster is a ball in an M dimensional space.  The clusters do not fill the space and the fraction of
the space filled by the clusters becomes less as M increases.  We compare the volume of a hypersphere
to the volume of its bounding box.  When M = 1, the hypersphere and the box are identical and the ratio
is 100%.  When M = 2, the ratio is π/4 = 79%.  When M = 3, the ratio is π/6 = 52%.  When M = 6, the
ratio is 3%.  We will fill the space by associating each measurement with the nearest cluster.

If we cluster a set of measurements, we will find a set of root measurements and many of the
measurements will be members of one of the clusters, but many of the measurements will not be a
member of any of the clusters.  We will say that a measurement is associated with the root vector that

has the highest correlation with the measurement if the correlation is greater than εg.  If we assume that

the minimum number of members in a cluster is one (and εa >  εg), all of the measurements will be
members or associates of one of the clusters.  If the minimum number of members in a cluster is more
than one, some of the measurements may be unclassified.

As we calculate each row of the correlation matrix, we update the closest root vector.  Let, gj be defined

by:  jg =
k

max jkc .  As each correlation coefficient is calculated, we can update gj.  After we calculate

each row of the correlation matrix, we look for a vector that is "not close" to any of the current root

vectors and add it to the list of root vectors.  Thus, the next root vector satisfies: gj < εa and c1k > εd.
When we get to the end of the list of vectors, we stop clustering.

We will store the root vectors in an array: ϕ(m).  Before we begin clustering, we choose the first root
vector [ϕ(1)] and set the cluster counter (mc) to zero.  During the cluster algorithm, we will choose the
next root vector.



8

Cluster Algorithm
1.  Loop over mg. {Continue until all root vectors chosen.}

mc = mc + 1.
ma = ϕ(mc).
mem = 0. {mem = members of the cluster.}

2.  Loop over mb. {All vectors.}
Calculate C(mb,mc). {C(mb,mc) is the mc row of the correlation matrix.}
If C(mb,mc) > ε, mem = mem + 1.

End of mb loop.
3.  If mem > 1, loop over mb {Have a cluster.}

If C(mb,mc) > ε {mb in cluster.}
Check for cluster overlap. {Is mb in another cluster?}
Λ(mb) = mc. {Set the cluster map.  Used to check for overlap.}

End if.
If C(mb,mc) > g(mb)

g(mb) = C(mb,mc). {Highest correlation.}
θ(mb) = mc. {Closest root vector}

End if.
Set the color map for the figures.

End if.

4.  If mem < nc, mc = mc - 1. {Do not have a cluster.}
5.  Loop over mb.  Start at ma. {Choose the next root vector.}

If C(mb,1) < εb, next mb.

If g(mb) < εa,
ϕ(mc+1) = mb. {Next root vector.}
Go to 1. {Continue mg loop.}

End mb loop.
6.  Exit from the mg loop. {Clustering is completed.}
7.  End of mg loop.
8.  Loop over mb {Set the final cluster map.}

if g(mb) > εg, Λ(mb) = θ(mb).
End mb loop.
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4.  RESULTS

We have analyzed the hyperspectral images for the nine sites listed in Table 1.  To compare Site B with
its neighborhood, we expanded the area from 12,740 pixels to 90,720 pixels.  The number of pixels
ranges from 23,100 for Site A to 104,160 for Bluestem 134.  The two rows for each of the sites present
the results for two different cluster radii: 0.990 and 0.996.  For the smaller cutoff, the number of clusters
ranges from 35 for Zink Ranch 127 to 133 for Bluestem 134. For the larger cutoff, the number of
clusters ranges from 100 for Site A to 418 for Bluestem 134.

Name Clusters Members Associated Unclustered Pixels
Blue 134 133 76120 28027 13 104160

418 55271 48785 104 104160
Blue 135 81 53687 21366 19 75072

238 31379 43625 68 75072
Blue 136 61 49244 10755 1 60000

185 27522 32454 24 60000
Site A 46 13702 3337 6061 23100

100 7573 8856 6671 23100
Site B 82 68290 11202 11288 90720

219 44506 34709 11505 90720
Old Site B 38 8787 2427 1526 12740
TGP 118 49 20324 8053 9 28416

125 11737 16652 27 28416
TGP 122 74 25059 23951 10 49020

257 25420 23566 34 49020
Zink 127 35 25923 11030 7 36960

115 25821 11132 7 36960
Zink 131 50 68171 19724 9 87904

174 41595 46298 11 87904

Table 1.  Summary of the clustering results.

At the end of the clustering algorithm, we eliminate overlap by assigning each pixel to the closest root
vector.  We associate pixels that are not members of a cluster with the nearest root vector, if they are

within the group cutoff (rg) of a root vector.  In Table 1, the Members column is the sum of all of the
cluster members, the Associated column is the sum of all of the associated pixels, and the Unclustered
column is the sum of all pixels that are neither members nor associates.

The Unclustered values are high for Sites A and B because we used rb to exclude the water pixels.

For each site, we have more than 10, 000 pixels and each pixel has 126 bands of spectral data.  If the
hyperspectral measurements have sufficient variance, we would be able to find a basis for the
measurements with 126 members.  Typically, the variance is not sufficient and the number of basis
vectors (the numerical rank) is 20 or less.  Singular value decomposition (SVD) can be used to create
both an uncorrelated orthonormal basis for a collection of spectral measurements and the value of the
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numerical rank (K). The SVD basis vectors are the principal axis of the hyperellipsoid that bounds the
measurements.  The first basis vector is the mean value for the measurements; the second and higher
components are the directions with the most variance in the data. We will define the numerical rank by
determining the number of basis vectors required to explain a given level (for example 99%) of the
variance in the data.

We have applied SVD to the root vectors for each of the nine sites and the results are summarized in
Table 2.  The table shows the numerical rank required to achieve three levels of variance: 99%, 99.5%,
and 99.9%.  At all three levels, the Blue 134 site has the highest numerical rank.  This high level of
variance is consistent with the Blue 134 site having the highest number of clusters.  Site B also has high
values for numerical rank.  Site A, TGP 118, and Zink 127 have low values for numerical rank and small
numbers of clusters.  In all cases, the numerical rank is lower or the same for the cases with the smaller
correlation cutoff and higher number of clusters.  My intuition suggests that the rank would be higher.
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Name Clusters 99% 99.5% 99.9%
Blue 134 133 8 10 17

418 6 8 13
Blue 135 81 7 9 15

238 5 6 12
Blue 136 61 6 7 13

185 5 7 12
Site A 46 6 8 14

100 4 6 11
Site B 82 7 9 17

219 5 7 13
Old Site B 38 6 7 12
TGP 118 49 5 7 12

125 5 6 11
TGP 122 74 6 8 14

257 5 7 12
Zink 127 35 5 7 11

115 5 6 11
Zink 131 50 6 8 13

174 5 7 12

Table 2.  Numerical rank of root vectors using the SVD basis.

This section will present the results for the nine sites.

4.1.  USGS Site A
The USGS Site A is in the upper right corner of Figure 4.  The boundaries of analysis region are
displayed in Figure 5.  Figure 5 is based on the same three band HyVista reflectance data as in Figure 4.
However, the magnitude of the colors for each pixel has been increased until one of the colors is at the
maximum value.  We call it a "Bright Pixel" image.  The unvegetated areas disturbed by oil production
and changes in the lake level are orange on the image.
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Figure 4.  USGS Site A Three Band HyVista image.

Figure 5.  Bright Pixel Image of the Site A Analysis Region.



13

As displayed in Table 1, we have created clusters.  The next step is to produce geobotanical maps in
which each cluster has a different color and the cluster position is plotted on a map that covers the same
region as Figure 5.  In Table 1, the number of clusters ranges from 35 to 418.  We have created a 27
value color table by allowing each of the three primary colors (red, green, blue) have three values (zero,
middle, high).  The color table is displayed in Figure 6.  Since it is difficult to distinguish all of the 27
colors on a computer screen and even harder on printed output, we cannot create a unique color for each
of the clusters.

Figure 6.  Color Table.

We can display all of the big clusters with a unique color if we set the definition of big high enough.
The big clusters for Site A are displayed in Figure 7.  For Site A, big means members greater than 3.
For Bluestem 134 with 133 clusters, big means members greater than 80.  We are primarily interested in
brine scars.  We can create an image where most vegetation is green, and we can use the colors for all of
the brown (not green) clusters.  For a large number of brown clusters the color scale repeats after all of
the colors are used.  Figure 8 displays all of the brown clusters for Site A.
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Figure 7.  Site A Big Clusters.

Figure 8.  All Brown Clusters for Site A.
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We have explored several methods for visualizing the data.  We plot the correlation coefficient with
respect to one of the root vectors.  We will use either green vectors or brown vectors.  We have created a
continuous color scale from green through blue to red (see Figure 10).  We use a cutoff and all
measurements below the cutoff are yellow.  When we correlate with a green vector, high correlation is
green and low is red (Figure 9).  When we correlate with a brown vector, high correlation is red and low
is green (Figure 11). While both Figures tell similar stories, the red area is much larger in Figure 11.
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Figure 9.  Correlation with a Green vector for Site A

Figure 11.  Correlation with a Brown vector for Site A

Figure 10.  Color Scale
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4.2.  USGS Site B
The USGS Site B is in the upper middle of Figure 3.  The bright pixel image of the initial Site B analysis
area is displayed in Figure 12.  The unvegetated regions are orange on the image.  This region has 38
clusters.  The big clusters with more than 4 members are shown in Figure 13.  The all brown cluster
image is displayed in Figure 14.  One of our challenges is to differentiate between different sources of
environmental damage.  For this site, we want to distinguish roads from areas damaged by produced
water spills.  An enlargement of the road in the upper left area of the study area is displayed in Figure 15
and an enlargement of the area down stream from the produced water holding pit is shown in Figure 16.
The holding pit is the white region in Figure 16 (and all of the other figures).  From the pit, the site has a
gentle slope to the lake shore on the right.  Comparing the two images, we find two clusters that are only
in the road image, nine clusters that are only in the pit image, and 7 clusters that are in both images.
Thus, we can distinguish road damage from produced water damage.

Figure 12.  Bright Pixel Image of the Initial Site B Analysis Region.
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Figure 13.  Site B Big Clusters.

Figure 14.  All Brown Clusters for Site B.
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Figure 15.  Enlargement of Road in upper left of Figure 14.

Figure 16.  Enlargement for Site B.
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4.3.  Bluestem Site 134
The color image for the Bluestem Site 134 is displayed in Figure 17.  The bright pixel image of the
analysis area is shown in Figure 18.  The big (more than 80 members) cluster map is displayed in Figure
19.  The brown cluster map is shown in Figure 20.  Figures 21 to 24 present enlargements of various
regions of Figure 20.  The all cluster map is shown in Figure 25 for the 131 cluster case and in Figure 26
for the 418 cluster case.  We use single cluster maps to display the spatial location of each cluster.  Most
of the brown and peach pixels in Figure 26 are from clusters 1 and 14, which are shown in Figures 27
and 28.

Figure 17.  The color image for the Bluestem Site 134.
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Figure 18.  The Bright Pixel Image of the Bluestem Site 134.
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Figure 19.  The Big Cluster map for the Bluestem Site 134.
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Figure 20.  The Brown Cluster Map for the Bluestem Site 134.
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Figure 21.  Enlargement of the Bluestem Site 133 in the lower left of Figure 20.

Figure 22.  Enlargement of the Pit Site in the lower right of Figure 20.
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Figure 23.  Enlargement of the road in the upper part of Figure 20.

Figure 24.  Enlargement of the center of Figure 20.
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Figure 25.  The 133 Cluster Map for the Bluestem Site 134.
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Figure 26.  The 418 Cluster Map for the Bluestem Site 134.
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Figure 27.  The Cluster 1 (of 418) Map for the Bluestem Site 134.
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Figure 28.  The Cluster 14 (of 418) Map for the Bluestem Site 134.
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4.4.  Bluestem Site 135
The color image for the Bluestem Site 135 is displayed in Figure 29.  The bright pixel image of the
analysis area is shown in Figure 30.  The big (more than 24 members) cluster map is displayed in Figure
31.  The brown cluster map is shown in Figure 32.  The all cluster map is shown in Figure 33 for the 81
cluster case and in Figure 34 for the 238 cluster case.

Figure 29.  The color map for the Bluestem Site 135.
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Figure 30.  The Bright Pixel Image of the Bluestem Site 135.
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Figure 31.  The Big Cluster map for the Bluestem Site 135.
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Figure 32.  The Brown Cluster Map for the Bluestem Site 135.
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Figure 33.  The 81 Cluster Map for the Bluestem Site 135.
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Figure 34.  The 238 Cluster Map for the Bluestem Site 135.
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4.5.  Bluestem Site 136
The color image for the Bluestem Site 136 is displayed in Figure 35.  The bright pixel image of the
analysis area is shown in Figure 36.  The big (more than 14 members) cluster map is displayed in Figure
37.  The brown cluster map is shown in Figure 38.  The all cluster map is shown in Figure 39 for the 61
cluster case and in Figure 40 for the 185 cluster case.

Figure 35.  The color map for the Bluestem Site 136.
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Figure 36.  The Bright Pixel Image of the Bluestem Site 136.
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Figure 37.  The Big Cluster map for the Bluestem Site 136.
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Figure 38.  The Brown Cluster Map for the Bluestem Site 136.
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Figure 39.  The 61 Cluster Map for the Bluestem Site 136.
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Figure 40.  The 185 Cluster Map for the Bluestem Site 136.
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4.6.  Tallgrass Prairie Site 118
The color image for the Tallgrass Prairie Site 118 is displayed in Figure 41.  The bright pixel image of
the analysis area is shown in Figure 42.  The big (more than 13 members) cluster map is displayed in
Figure 43.  The brown cluster map is shown in Figure 44.  The all cluster map is shown in Figure 45 for
the 49 cluster case and in Figure 46 for the 125 cluster case.

Figure 41.  The color map for the Tallgrass Prairie Site 118.
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Figure 42.  The Bright Pixel Image of the Tallgrass Prairie Site 118.
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Figure 43.  The Big Cluster map for the Tallgrass Prairie Site 118.
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Figure 44.  The Brown Cluster Map for the Tallgrass Prairie Site 118.
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Figure 45.  The 49 Cluster Map for the Tallgrass Prairie Site 118.
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Figure 46.  The 125 Cluster Map for the Tallgrass Prairie Site 118.
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4.7.  Tallgrass Prairie Site 122
The color image for the Tallgrass Prairie Site 122 is displayed in Figure 47.  The bright pixel image of
the analysis area is shown in Figure 48.  The big (more than 24 members) cluster map is displayed in
Figure 49.  The brown cluster map is shown in Figure 50.  Figures 51 to 54 are enlargements of four
regions of Figure 50.  The all cluster map is shown in Figure 55 for the 74 cluster case and in Figure 56
for the 257 cluster case.

Figure 47.  The color map for the Tallgrass Prairie Site 122.
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Figure 48.  The Bright Pixel Image of the Tallgrass Prairie Site 122.
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Figure 49.  The Big Cluster map for the Tallgrass Prairie Site 122.
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Figure 50.  The Brown Cluster Map for the Tallgrass Prairie Site 122.
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Figure 51.  Enlargement of the pond in the upper right of Figure 50.

Figure 52.  Enlargement of the road in the upper center of Figure 50.
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Figure 53.  Enlargement of the Northwest region of the scar in Figure 50.

Figure 54.  Enlargement of the Southwest region of the scar in Figure 50.
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Figure 55.  The 74 Cluster Map for the Tallgrass Prairie Site 122.
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Figure 56.  The 257 Cluster Map for the Tallgrass Prairie Site 122.
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4.8.  Zink Ranch Site 127
The color image for the Zink Ranch Site 127 is displayed on the left side of Figure 57 (which is identical
to Figure 3).  The bright pixel image of the analysis area is shown in Figure 58.  The big (more than 14
members) cluster map is displayed in Figure 59.  The brown cluster map is shown in Figure 60.  The all
cluster map is shown in Figure 61 for the 35 cluster case and in Figure 62 for the 115 cluster case.

Figure 57.  The color map for the Zink Ranch Site 127.
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Figure 58.  The Bright Pixel Image of the Zink Ranch Site 127.
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Figure 59.  The Big Cluster map for the Zink Ranch Site 127.
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Figure 60.  The Brown Cluster Map for the Zink Ranch Site 127.
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Figure 61.  The 35 Cluster Map for the Zink Ranch Site 127.
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Figure 62.  The 115 Cluster Map for the Zink Ranch Site 127.
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4.9.  Zink Ranch Site 131
The color image for the Zink Ranch Site 131 is displayed in Figure 63.  The bright pixel image of the
analysis area is shown in Figure 64.  The big (more than 14 members) cluster map is displayed in Figure
65.  The brown cluster map is shown in Figure 66.  Enlargements of five regions of Figure 66 are
displayed in Figures 67 to 71.  The all cluster map is shown in Figure 72 for the 50 cluster case and in
Figure 73 for the 174 cluster case.

Figure 63.  The color map for the Zink Ranch Site 131.
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Figure 64.  The Bright Pixel Image of the Zink Ranch Site 131.



64

Figure 65.  The Big Cluster map for the Zink Ranch Site 131.
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Figure 66.  The Brown Cluster Map for the Zink Ranch Site 131.
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Figure 67.  Enlargement of the lower right of Figure 66.

Figure 67 is in the lower right corner of Figure 66 and the left side is the Zink 131 oil production site
and the right side is the road.  Some of the pixels (green, black, and yellow) are associated with both oil
and road.  The brown, red, orange, and blue pixels are only associated with the road.  The oil linked
pixels are: magenta (C21), peach (C29), and grey (C23).
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Figure 68.  Enlargement of the lower middle of Figure 66.

Figure 68 is in the lower middle of Figure 66.  The magenta, peach, and grey pixels are present.
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Figure 69.  Enlargement of the upper left of Figure 66.

Figure 69 is in upper left of Figure 66 and is Zink site 130.  There are three magenta and one grey pixels.
There are many violet pixels in the figure, but we shall find that they are associated with roads.
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Figure 70.  Enlargement of the upper right of Figure 66.

Figure 70 displays the intersection of a small road with the paved road in the upper right corner of
Figure 66.  The violet pixels are adjacent to the red pixels in the center of the road.
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Figure 71.  Enlargement of the center of the left edge of Figure 66.

Figure 71 is in the center of the left edge of Figure 66.  The figure has 7 magenta pixels on the left and
one on the upper right and two pink pixels (Cluster 40) on both the upper and lower left.
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Figure 72.  The 50 Cluster Map for the Zink Ranch Site 131.
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Figure 73.  The 174 Cluster Map for the Zink Ranch Site 131.
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September 14, 2004

4.10.  Cluster Coordinates.

As mentioned at the start of this section, we have used SVD to create an uncorrelated orthonormal basis
for the root vectors for each of the nine sites.  Table 4 shows that between 4 and 8 basis vectors are
required to capture 99% of the variance in the root vectors.  In this subsection, we will use the first 4
basis vectors to plot the locations of the root vectors for four cases: Site A with 46 clusters, Site A with
100 clusters, Site B with 82 clusters, and Site B with 219 clusters.  For each site will plot three slices
through the 4D space: axis 1 vs axis2, axis 2 vs axis 3, and axis 2 vs axis 4.  The results are displayed in
Figures 74 to 85.

Since axis 1 is the mean value of the measurements and axis 2 is the direction of greatest variance, the
plot of axis 1 vs axis 2 looks like a parabola.  The root vectors with the highest value of a1 have a small
value for a2, while the root vectors with either the highest or lowest values of a2 have the smallest

values for a1.  Since we used a rb to eliminate the water pixels for both Site A and Site B, we are not
surprised that there are no negative values for a1 for any of the four cases.  For both sites, the range of
values of a1 is higher in the case with a small number of clusters than in the case with a large number of
clusters.  A large number of clusters occurs when the cluster radius is smaller.  The total number of
cluster members is smaller with the larger number of clusters.  Even though the members of each cluster
will have less variance, we would expect a larger number of distinct root vectors to have more variance
than a smaller number.  This result is consistent with the results in Table 2, where the numerical rank is
higher for the cases with the smaller number of root vectors.

In general, the plots of axis 2 vs axis 3, and axis 2 vs axis 4 have a significant number of points in all
four quadrants.  Thus, the root vectors are significantly different from each other are diverse.  As we
complete our analysis of Sites A and B, we may be able to place a label on each of the SVD basis
vectors.  For example, axis 1 could distinguish between green plants and disturbed soil.
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Figure 74.  The location of the 46 root vectors for Site A on axis 1 vs axis 2.
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Figure 75.  The location of the 46 root vectors for Site A on axis 2 vs axis 3.
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Figure 76.  The location of the 46 root vectors for Site A on axis 2 vs axis 4.
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Figure 77.  The location of the 100 root vectors for Site A on axis 1 vs axis 2.
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Figure 78.  The location of the 100 root vectors for Site A on axis 2 vs axis 3.
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Figure 79.  The location of the 100 root vectors for Site A on axis 2 vs axis 4.
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Figure 80.  The location of the 82 root vectors for Site B on axis 1 vs axis 2.
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Figure 81.  The location of the 82 root vectors for Site B on axis 2 vs axis 3.
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Figure 82.  The location of the 82 root vectors for Site B on axis 2 vs axis 4.
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Figure 83.  The location of the 219 root vectors for Site B on axis 1 vs axis 2.
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Figure 84.  The location of the 219 root vectors for Site B on axis 2 vs axis 3.
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Figure 85.  The location of the 219 root vectors for Site B on axis 2 vs axis 4.
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