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Abstract Experimental Procedure Analysis

Synchrotron x-ray radiation offers many advantages over v The (211), (422) & (633) Fe peaks were selected to + An exponentially weighted average of the
conventional sources. One of these is the ability to choose the allow use of a single x-ray elastic constant, derived for interplanar spacing as a function of energy (depth)
x-ray energy/wavelength over a wide spectrum. Generally this material and 1 angle was measured

speaking, increasing the x-ray energy increases the depth of « (1+v)/E = 5.17 X 10-'2 Pa for [211] direction <+ The residual stresses were calculated using the
penetration. When combined with XRD residual stress « E= 251 GPa assuming v =0.3 Sin? ¢ technique?

techniques, this fact allows the resolution of near surface
residual stresses versus depth non-destructively. Traditionally,
stress versus depth measurements have been done using either

neutron diffraction or a destructive XRD/layer removal ** Measurements were made at 5.35, 17.5, 26.5, and 30.0
technique. The neutron method is excellent for interior KeV using parallel beam optics

measurements, but due to the sampling volume size, it is not % Neutron measurements were made at HFIR
appropriate for resolving sharp stress gradients near a surface. (A =1.65 A) on the (211) Fe peak

The XRD/layer removal technique is capable of resolving these

near surface stress gradients, but it is destructive, which is

often undesirable.

%+ Synchrotron measurements were made at the NSLS +* An estimate of the actual residual stress depth

facility at BNL and at the APS facility at the ANL profile was calculated from the exponentially
weighted averaged data using a numerical linear

inversion technique?*

The synchrotron data for the crankshaft sample clearly shows the transition from compressive to tensile

In this study the x-ray energies selected allowed measurements residual stress, since the depth of deformation due to the grinding operation is shallow.

to be made with the same family of planes, allowing the use of
a single x-ray elastic constant generated using conventional
methods. The contributions to residual stress at each depth :
are successively separated from each depth/volume at each __ o ToNe o o

energy level via linear numerical inversion method. The ' |

residual stress versus depth profiles are then generated for two i > i |

0.4% carbon steel samples with different surface treatments: _ ﬂl,

1) forged and shot peened, and 2) induction hardened and | | ¥ e

ground. The results will be compared to the XRD/layer s il T e e m wm
removal and neutron measurements.
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Introduction

*+ Many processing operations have been developed, such as
opening, to impart a highly compressive layer on the
surface of the component

Resdual 51ress, MFa

*s* This residual stress is of interest due to it’s influence on
component fatigue life

%+ Measurement of the residual stress profile is typically
destructive, using an XRD - layer removal technique

(here etching)!
The XRD/etch layer removal data from the The data from all three techniques in the

axial direction of the crankshaft sample axial direction of the connecting rod

shows agreement with with the synchrotron sample display trend agreement.
data.

++ Non-destructive measurement of the residual stress depth
profile is of interest since it would allow subsequent
fatigue testing of the same component

++ XRD and fatigue testing of the same components

measured will increase residual stress-fatigue data Due to shot peening, the connecting rod sample has a compressive layer greater than the depth
correlation measured using the synchrotron energies of this study.
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++ Sample was sectioned from
a finished crankshaft that
had been induction

hardened and ground
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Directions of Stress in Connecting Su mmary

Rod Specimen “+ The residual stress as a function of depth was measured non-destructively by using neutrons and
by varying the energy/wavelength of the incident radiation

¢+ The rod was forged, quench _ . ’ ’ - : - : :
and tempered, and shot blast “* A linear numerical inversion method, first applied to grazing incidence x-ray diffraction data, was

prior to sample sectioning employed to estimate the actual stress profile from the measured data
“* Some agreement between the measurements was observed

<+ Although destructive, the conventional x-ray diffraction / layer removal method was preferred
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