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ABSTRACT
A lumped heat transfer model and parameter estimation
technique are proposed for determining key parameters as-
sociated with a heat flux Differential Scanning Calorimeter
(DSC). Part I of this two-part paper focuses on develop-
ing the mathematical model and describing the proposed
parameter estimation technique. Part II presents the nu-
merical implementation using a conventional Runge-Kutta
method with results indicating the merit of the proposed
parameter estimation method. In this part, the physical
model is derived, and simplifying assumptions are pre-
sented. The resulting heat transfer model requires the si-
multaneous resolution of two conduction and two radia-
tion parameters, and one time-dependent function using
two concurrent temperature data streams emanating from
the container plates in the device. The unknown func-
tions of interest include the furnace temperature which is
expanded into a finite series involving � predefined basis
functions each having a corresponding unknown expansion
coefficient. The resulting system of initial-value problems
is linearized using quasilinearization. Each dependent vari-
able is then decomposed into a series of baseline and sen-
sitivity functions. A least-squares minimization method is
introduced using the collected data streams to determine
the � � � parameters at the updated iterate. The iterative
process is continued until convergence takes place for all
system parameters. This paper highlights the modeling and
algorithm aspects associated with resolving these parame-
ters.
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1 Introduction

Differential Scanning Calorimetry is often used for char-
acterizing thermophysical properties such as specific heat,

and melting and solidification characteristics such as the
onset temperatures of phase transformation, the enthalpy
of fusion, and the solid fraction as a function of tempera-
ture [1–5]. In such devices, however, the collected temper-
ature data are not necessarily representative of the sample
temperature due to thermal lags, contact conductances and
radiative interactions. As a result, any simplified attempt to
attach the recorded thermocouple reading to the sample site
leads to erroneous results. It is imperative, therefore, to de-
velop a mathematical model that correctly accounts for the
heat transfer mechanisms in the DSC chamber where the
sample is placed. Results from such a simulation provide
an accurate depiction of the sample temperature by incor-
porating thermal lags into the modeled system. This paper
develops a framework based on detailed modeling and the
incorporation of experimental data to simultaneously ex-
tract the desired physical parameters and the furnace wall
temperature.

2 Physical Model

A generalized physical model for the heat flux DSC of in-
terest may be described by the schematic diagram shown
in Figure 1. The model consists of two cylindrical contain-
ers (or pans) resting on disk-shaped plates. One combina-
tion of container and plate is associated with the sample
whose thermophysical properties are unknown, while the
other combination is defined as a known reference. For
the purpose of this investigation, the sample and reference
containers and plates are considered to be symmetric. The
supporting plates are, in turn, connected by thin wires to a
larger container holder which is attached to a disk holder.
The entire apparatus is surrounded by a uniform heating
surface or furnace. Thermocouples embedded in the bot-
tom surfaces of the sample and reference plates are utilized
to obtain temperature data for both components.

Heat flow analysis of a similar heat flux DSC model
has shown that the temperature gradients within a particu-
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Figure 1. Schematic for typical heat flux DSC head system.

lar component are negligible when compared to the differ-
ences which occur at the boundaries between two separate
regions of the calorimeter [6]. Therefore, it is possible to
represent each component as a region possessing a spatially
uniform temperature at any instant during the heating or
cooling process. Heat transfer within the calorimeter may
then be assumed to take place between the individual re-
gions in the form of thermal resistances as suggested by [7]
and [8].

Neglecting the effects of convection, which are small
when compared with the other modes of heat transfer, and
ignoring the minimal conduction which occurs along the
wires supporting the sample and reference plates, a heat
balance between the components of the model described
above produces the system of governing equations
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where � is the component mass, � is the component spe-
cific heat, � is the component-specific conduction param-
eter, and � is the component-specific radiation parame-
ter. Equations (1a – h) apply to the sample container (sc),
reference container (rc), sample (s), reference (r), sample
plate (sp), reference plate (rp), container holder (c), and
disk holder (d), respectively. It can readily be seen that this
model requires the determination of nine unknown temper-
ature functions as well as the estimation of eleven unknown
parameters – four conduction-related parameters and seven
radiation-related parameters – using only the data gathered
by the thermocouples on the sample and reference plates.
It would therefore be beneficial, as a first approximation, to
construct a simplified version of the above model.

3 System Simplification and Mathematical
Formulation

A simplified model for the two-pan heat flux DSC system
described in the previous section may be constructed based
on the following assumptions:

� No reference sample is used in the reference con-
tainer; as a result, the need for its contribution to the
model is eliminated.

� The sample and sample container are considered to
have the same instantaneous temperature; hence, only
one equation is needed to analytically model both
components.

� The container holder and disk holder are considered
to have the same instantaneous temperature as the fur-
nace wall; therefore, these two components may be
neglected in the model.

Heat flux DSC experiments are often conducted without the
use of a reference sample, validating the first assumption.
The other assumptions may be justified based on the small
mass of the components and the advantageous thermophys-
ical properties associated with the alloys of which they are
made.

Considering only single phase heating and cooling,
the above assumptions lead to a set of governing equations
for the remaining components as given by
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where
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with the initial conditions

����� � ������ � ����� � ������ � ��� (2i)

Furthermore, it is assumed that temperature data are avail-
able at both the sample plate and reference plate, i.e.,
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Hence, the problem may be described as having four
unknown system parameters – �������� ���� ��� – as
well as the unknown temperature functions. The two
conduction-related parameters are associated with heat
flow between the sample (or reference) plate and sample
(or reference) container, while the two radiation-related pa-
rameters are associated with heat flow between the furnace
wall and the plates (���) or containers (���).

For convenience, the radiative contribution from the
furnace wall, � �

� , can be represented as a series expansion
of the form
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where the expansion coefficients, ����
���, become addi-
tional unknown parameters which are determined in the
minimization process. For an initial furnace wall tempera-
ture condition given by �� ��� � ��, the expansion at � � �
may be written as
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Releasing the �� coefficient in the expansion leads to the
expression
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If ����� is chosen such that ����� �� �, algebraic manipu-
lation of Eq. (6) yields
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and so, substituting Eq. (7) into the general expansion in
Eq. (4) provides
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Making the definitions
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where

����� � Set of basis functions,


���� � Set of trial functions,

the series expansion for the radiative contribution due to
the furnace wall can be written as
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Inserting Eq. (10) into Eqs. (2a – d) produces the modified
governing equations
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subject to the initial conditions displayed in Eq. (2i).



3.1 Quasilinearization

In order to apply the Function Decomposition Method
(FDM) to the set of simultaneous nonlinear ordinary differ-
ential equations which govern the system, it is first neces-
sary to employ Bellman’s quasilinearization technique [9].
Based in part upon the Newton–Raphson method, quasi-
linearization provides a powerful and rapidly converging
means for solving nonlinear equations. As an initial step,
Eq. (11a – d) may be recast in the form
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where ����
�
��� is considered to be functionally dependent

on all unknown variables and parameters, i.e.,
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Developing a multivariable Taylor series about iterate �, a
recurrence relation between iterates � and � � � may be
obtained in the form
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Upon truncation of the higher order terms and enforcement
of the condition �

�����
� � �

���
� � �, substitution of the

required partial derivatives produces the series of iterative
equations:
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where for convenience, superscripts for the previous iter-
ate, �, have been dropped. Collecting all unknown variable
terms corresponding to the most recent iterate, �� �, onto
the left-hand side gives the recurrence relations
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It can readily be seen that the expressions inside the brack-
ets in Eq. (16a – d) are equal to ��, i.e., �� � � � � �� � �,
and so these equations become
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Eq. (17a – d) can be confirmed by checking the limit as
� � 	, in which case the governing equations are re-
turned.

3.2 Function Decomposition

With the iterative, linearized recurrence relations defined,
functional decomposition of the unknown temperature vari-
ables may now be applied. The process begins by express-
ing these variables at iterate ��� as functional expansions
of the form
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��� is the set of unknown system param-

eters and coefficients, �� � � is the number of unknown
system parameters plus unknown coefficients for the series
expansion describing � �

� ���, and �� is the number of un-
known variables. For the simplified two-pan DSC model
described, expansions for the unknown temperatures can
be given by
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Substituting the appropriate expansions into Eq. (17a – d)
generates:
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(20d)

Based on Eq. (20a – d), a linear system of ordinary differ-
ential equations for the baseline and sensitivity functions
may be produced by equating terms containing like coeffi-
cients from the set ��� ��� � � � � �
���. Therefore, for exam-
ple, the baseline functions are given by
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with the initial conditions

�������� � ��������� � �������� � ��������� � ��� (21e)

A similar series of equations can be formed for each of the
sensitivity functions, ��� � � � � �
��, where the initial condi-
tions are all equal to zero. The resulting systems of cou-
pled equations may be solved by using conventional time-
stepping routines or by treating time elliptically and em-
ploying a weighted residuals method [10].

3.3 Minimization

The final step which must be performed for each iter-
ation is the determination of the sensitivity coefficients,
��

�����
� �
�����, which correspond to the unknown system

parameters. This calculation is accomplished by means of
a discrete least-squares minimization using the measured
temperature data sets described in Eq. (3a) and Eq. (3b).
Reconstructing the temperature functions for both the sam-
ple and reference plates, residual functions may be written
as
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Implementation of the discrete least-squares method leads
to the total least-squares error for the above residuals in the



form

���������� �
������

�

	�
���

�
�����������


���
���

������� ������ ����� �����

��

�

	�
���

�
�����������


���
���

������� ������ ����� �����

��
�

(23)

The minimization condition is enforced with respect to the
sensitivity coefficients, that is,
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Applying Eq. (24) to the error expression given by Eq. (23)
generates a new system of linear equations for the sensitiv-
ity coefficients which can be written as
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Solution of this system yields updated values for the un-
known system parameters which are then used to recon-
struct updated temperature profiles for all components of
the model. The iterative process described in this section is
repeated until satisfactory convergence of the parameters is
achieved.

4 Conclusions

A mathematical-inverse methodology is proposed for ac-
quiring important DSC parameter information. The de-
scribed approach is general and applicable to larger
systems. In practice, a progressive set of experi-
ments/simulations is planned to isolate unchanging param-
eters from the experimental runs containing the unknown
sample. The modeled system, given by Eqs. (21a-d) and
subject to Eq. (21e), can be solved by conventional doc-
trine involving an initial-value solver. However, in cases
involving large data sets (say  8000 points/set), a less
conventional method of weighted-residuals involving time-
collocation will require less memory, increase stability, and
compute faster than by using a conventional time marching
scheme. The accompanying paper details the numerical
implementation of the developed algorithm and presents
numerical results indicating the merit of the proposed pa-
rameter estimation technique.
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