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OBJECTIVE 
 
Our objective is to develop a rigorous general relation between indentation hardness (H) and the true 
stress-strain constitutive σ(ε) laws governing the plastic deformation of metals and alloys. 
 
SUMMARY 
 
A new and powerful indentation hardness (H) approach to evaluating the true stress (σ)-true plastic strain 
(ε), σ(ε), constitutive behavior of materials is described. Since measurements of H intrinsically probe a 
wide-range of ε (up to ≈0.5) , accurate assessment of the corresponding yield (σy) stress and strain 
hardening [σsh(ε)] pose a significant challenge. Extensive elastic-plastic finite element (FE) simulations 
have been carried out to assess the relation between H and σ(ε). The simulations were based on both a 
wide variety of analytical σ(ε) relations, in the form of σ(ε) = σy + σsh(ε), as well as  actual σ(ε) derived 
from data on a large number of alloys with a very wide range of constitutive behavior. The analysis led to 
derivation of a remarkable universal relation between H and σ(ε) given by H ≈4.05(1 + 34.6σflow/E)σflow, 
where σflow = σy + <σsh>, <σsh> is the average strain hardening between ε =  0 and 10%, and E is the 
elastic modulus. Note we use consistent MKS units of MPa for both H and σflow. The expression for 
H(σflow) also can be inverted to one describing σflow(H). Experimental σflow- H data pairs based on this 
definition of σflow for the large set of alloys noted above with a very diverse range of σ(ε) are in excellent 
agreement with the model predictions. The σflow- H relation provides insight into the large variation of the 
H/σy ratios that are observed for different materials, as well as the corresponding variation in the ∆H/∆σy 
ratios used to estimate ∆σy due to irradiation based on measurements of ∆H. Applications of the H/σflow 
relation, including both evaluating <σsh> in materials that have very low uniform strain capacity in standard 
tensile tests and measuring at σ(ε) high ε. 
 
PROGRESS AND STATUS 
 
Introduction 
 
Microhardness (H) measurements provide a convenient, non-destructive means to evaluate the strength 
of materials, as well as to characterize effects such as irradiation hardening. However the relation of H to 
more quantitative measures of true stress-strain σ(ε) constitutive properties, such as the yield stress (σy) 
and post-yield strain hardening (σsh), have remained ambiguous, and to a large extent semi-empirical. 
This is in large part due to the fact that H intrinsically probes a wide range of ε, hence, represents some 
average measure of an effective flow stress, σflow= σy + σsh.  In principle, the decomposition of into σy and 
σsh, which is an appropriate physical form as proposed by Kocks and Mecking, as well as Zerrelli and 
Armstrong and others, provides a basis to better quantify the H-σ(ε) relation. For a specified geometry, 
from a continuum perspective the H-σ(ε) relation can depend only on σy, σsh averaged over some 
undefined and perhaps variable ε-range, E (or the indenter and material modulus) and the friction 
coefficient, µ. For example, in the case of a perfectly plastic material, the H/σy ratio would be expected to 
depend only weakly on E and µ. Further, while indentations produce a large range of ε (≈0 to 50%), they 
are finite and very small regions of high ε would be expected to have little effect on σsh.  Thus we carried 
out and extensive series of finite element (FE) simulations of the relation between H and σy plus σsh(ε) 
averaged over different strain ranges for a very wide range of σ(ε) to assess the possibility of obtaining a 
of a universal master H-σ(ε) relation. 
 
We found such a relation in the form H = 4.05(1 + 34.6σflow/E)σflow, where σflow= σy + <σsh>, <σsh> is the 
average strain hardening between ε = 0 and 10% and E is the elastic modulus. We show that the master 
relation provides insight into the large variation of the H/σy ratios that are observed for different materials, 
as well as the corresponding variation in the ∆H/∆σy ratios used to assess effects such as hardening due 
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to irradiation. We also show that useful applications of the H/σflow relation are to evaluate <σsh> in 
materials that have very low uniform strain capacity in standard tensile tests as well as to measure σ(ε) 
high ε. 
 
Finite Element Modeling of Indentation Harness (H) 
 
Cone indentations were simulated using the general purpose FE code ABAQUS. The plasticity model in 
ABAQUS is based on J2-incremental flow theory. The inputs to ABAQUS are E, σy, σsh(ε) and the contact 
interface friction coefficient (µ). The cone indenter, with an angle of 68.2o, was treated as two-dimensional 
(z, r, symmetric in θ) rigid body. The two-dimensional half space mesh had 3021 four-node quadrilateral 
axisymmetric elements with 3232 nodes. The radial (R) and depth (z) dimensions of the mesh were ≈ 
50Dmax and 20Dmax, respectively, where Dmax is the maximum penetration depth of the cone. The mesh 
was refined in the area under the indenter (Fig. 1) and there were more than 20 elements in the contact 
area under the indenter at maximum load.  The calculations were carried out for a prescribed 
loading/unloading cycle to a maximum load P.  Hardness, H, was calculated as P/A, where A is the area 
of the permanent indentation, πD2/4, where D is the diameter of the indentation at the plane of the 
undeformed specimen surface. Test calculations were carried out to demonstrate that H was independent 
of the mesh size and a convergence study showed that the meshes provided accurate results for 
displacements and the pile-up shape. 

 
The friction between the specimen and the indenter affects the shape of the pile-up. For µ <0.2, the 
effects of µ are significant. However, the pile-up shape is insensitive to µ ≥0.2.  Since the nominal µ for 
such contacts is ≈0.2 to 0.3, µ = 0.2 was used in the FE simulations. The calculated H values are also 
insensitive to the load P between 40 and 200g. The effective plastic strain reached 0.5 directly 
underneath the indenter, so this was used as an upper bound for the strain range (Fig. 2). 
 

 
 

Fig. 1.  Section of the mesh used in the FE simulations of H. 
 
One large set of simulations were carried out for E = 200 GPa and constitutive laws in the form: 
 

σ(ε) = σy       ε ≤ εy   (1a) 
 

σ(ε) = σy +σsh= σy + σshm[1-exp(-γ(ε - εy)]              ε >εy (1b) 
 
The H were calculated for a Luder’s-yield strain (εy = 0.005) and a wide range of σy (100–850), maximum 
saturated strain hardening levels (σshm = 125–500) and pre-saturation hardening rates (γ = 3 to 15) (Fig. 
3). The calculations were also carried out for actual σsh(ε) curves derived from tensile tests on a large 
number of alloys with a very diverse range of constitutive properties ranging from annealed stainless 
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steels with low σy and γ and high σshm, to martensitic steels with intermediate σy and σshm and high γ, to 
TiNb with very low σshm. The materials also included unirradiated and irradiated Mn-Mo reactor pressure 
vessel (RPV) steels, as well as alloys with large Luders strain regions up to εl ≈10% and pre-strained 
materials. 
 

 
 

Fig. 2.  A typical example of the effective strain distribution under the indenter. 
 

 
 

Fig. 3.  Analytical σ(ε) laws used in the FE simulations of H. 
 
Results 
 
The σy versus H for σshm =0, 250, and 500 MPa and γ = 9 are shown in Fig. 4.  The σy increases with H as 
σy ≈ A + 0.3H, with A ≈25, 100 and 170 MPa for σshm = 0, 250, and 500 MPa, respectively. The 
corresponding positive offsets on the H axis primarily reflect a contribution to H of the σsh(ε) averaged 
over some effective increment of effective plastic strain, ε, under the indent. In other words the σflow 
probed by H is larger than σy by an effective ε-averaged <σsh>. 
 
Thus the FE H data for the various σ(ε) were analyzed by calculating the <σsh> between various lower (εl) 
and upper (εu) limits and fitting the corresponding σflow= σy + <σsh> versus H data with a function in the 
form: 
 

H = C1(1 + C2σflow)σflow      (2) 
 
Here C1 and C2 are weak functions of εl and εu. An optimum set of εu and εl can be determined by 
minimizing the standard deviation (δH) of the fit for the predicted Hp from Equation 2 to the FE simulations 
Hc as a function of εl and εu as: 
 

δH = [Σj(Hpn- Hm)2]1/2        (3) 

 3

111



 
for all values of H for the j different σ(ε). We found that values of εl ≈0.0 and εu ≈10% gives a very good fit 
as shown by the solid line in Fig. 5 given by:  
 

H=4.05(1 - 0.000173σflow)σflow      (4) 
 

 
 

Fig. 4.  The σy versus the FE simulations of H for different σshm (= C). 
 

 
 

Fig. 5.  The σflow = σy + <σsh> versus H for a wide range of σ(ε). 
 
These results are all for E = 200GPa. Thus the curvature in the σflow versus H relation is likely due to the 
corresponding variation in σflow/E. The H/σflow ratio would be expected to decrease with increasing σflow/E 
due to effects such as the constraint on the region of plastic deformation and reverse plasticity. Figure 6 
shows the H/σflow for versus σflow/E, including additional calculations for E = 50, 100, and 400 GPa for the 
same σ(ε). As expected, the variation in H/σflow in the initial calculations is consistent with variations in 
σflow/E. Thus Equation 4 can be rewritten as: 
 

H=4.05(1 - 34.6σflow/E)σflow (5) 
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However, the results in Fig. 6 show that the linear relation breaks down at σflow/E >0.006. A second order 
polynomial fit to the σflow/H for versus σflow/E data yields: 
 

H=4.08(1 + 1755[σflow/E]2 – 44.1[σflow/E])σflow (6) 
 
Additional calculations will be needed between σflow/E = 0.006 and 0.012 to confirm the non-linear fit. 
However, for most materials of interest, σflow/E <0.006; hence, Equation 4 gives an adequate 
representation of the FE results. 
 

 
 

Fig. 6.  The σflow/H versus σflow/E. 
 
Comparison with Experiment 
 
As noted above, tensile tests were conducted on a large number of materials with a very diverse range of 
σ(ε). Vickers diamond pyramid hardness (DPH) measurements were also made on these same materials 
in order to evaluate the FE predictions. The σflow = σy + <σsh> were directly assessed based on the 
experimental σsh(ε) =σ(ε) - σy converted from engineering stress strain curves up to the onset of necking 
and averaged between ε = 0 and 10%. Figure 7 compares the experimental σflow versus H data to the 
predictions of Equation 4. The agreement is generally very good, although the experimental data tends to 
fall slightly above the prediction line, especially at lower H; and overall the experimental σflow versus H 
relation is more linear than the FE results. FE simulations of diamond pyramid indenter hardness (DPH) 
show that HDPH are only slightly larger than for cone in indentation, thus variations in the indenter 
geometry do not explain the modest differences between experimental data and FE predictions of σflow. 
We plan to evaluate the effect of a non-rigid indenter next to see if this makes a difference. However, 
considering the uncertainties in the data and simplicity of the model, we believe the agreement between 
experiment observations and the FE based universal σflow - H relation is excellent and provides strong 
support for use of Equations 4 or 5. 
 
Discussion and Applications 
 
The universal master σflow - H relation is remarkable in view of the much larger ε-range created by the 
indentation (see Fig. 3). However, it permits a quantitative understanding of a number of empirical trends, 
such as: 

 5

113



 
1.  That there is a large variation in the observed H/σy ratios due to the effects of both <σsh> and σflow/E. 
 
2.  That the ratio of H/σy tends to be higher for steels with low σy due to the effect of σflow/E. 
 
3.  That the ∆H/∆σy following irradiation is generally lower than the unirradiated H/σy with irradiation due 

to reduction in <σsh>. 
 
In addition, the universal relation allows combining H and σy measurements from a tensile test to 
estimation of strain hardening in alloys with very low uniform tensile strain as:  
 

<σsh> = σflow(from H) - σy(from a tensile test) 
 
The universal relation also permits a convenient method to evaluate σ(ε) high ε regions by making H 
measurements on pre-strained materials. An effective way to do this is to make hardness transverses on 
sections of a bent beam that undergoes stable plastic deformation over a wide range of effective ε. 
Indeed, such transverses from regions of high deformation across the neutral axis not only assess 
regions with ≈0 to very high ε, but also involve complex and varying stress that yield information of 
plasticity flow laws and tensile to compressive deformation effects on σ(ε)j. 
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Fig. 7.  Pairs of σflow-H data points for materials with a wide range of compared to the FE 
model prediction. 
 
Future Research 
 
Future research will focus on the following items: 
 
1.  Assessment of the effect of the elastic modulus of the indenter. 
 
2.  Additional experimental verification of the σflow-H relation with an even wider range of materials. 
 
3.  Application of the method to assessing <σsh> in materials that undergo immediate necking. 
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4.  Assessing the σ(ε) at high ε in pre-deformed materials. 
 
5.  Evaluation of the effects of variations in stress state history on <σsh>. 
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