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Introduction
¥ The main materials science advances from a BPSX would occur

during the R&D phase prior to construction
Ðe.g., CIT/BPX, ITER

¥  Materials science opportunities during operation of a BPSX
would likely occur in niche areas
ÐCeramic insulators (radiation-induced conductivity, tan δ

degradation)
ÐOptical materials (F center formation, absorption peaks,

gamma ray vs. neutron effects)
ÐPolymers (effect of irradiation spectrum on cross-linking and

property changes)
ÐDiagnostic components
ÐDivertor materials



Desirable characteristics of a BPSX for
materials science studies

¥ Well-defined temperatures, stresses ,
radiation fields

¥ Materials testing ports (cf. DIMES) or
removable components (not necessarily
complete blanket sectors)

¥ For more timely data acquisition, long
reproducible pulse lengths and a high duty
factor are desirable



Fusion Materials Science Program
Theory-Experiment Coordinating Group*

Microstructural
Stability

Physical &
Mechanical
Properties

Fracture &
Deformation
Mechanisms

Corrosion and
Compatibility
Phenomena

Fabrication
and Joining

Science
Materials for Attractive
Fusion Energy
•  Structural Alloys*

-  Vanadium Alloys
-  F/M and ODS Steels
-  High T Refractory Alloys
-  Exploratory Alloys

•  Ceramic Composites*
-  SiC/SiC, other CFCs

•  Coatings
•  Breeder/multiplier

Materials
•  Neutron Source Facilities

Materials for Near-
Term Fusion
Experiments
•   PFMs (Refractory

Alloys, etc.)
•  Copper Alloys
•  Ceramic Insulators
•  Optical Materials

*asterisk denotes Fusion Materials Task Group



The R&D portfolio of the fusion materials science
program has two general guiding features

¥Provide a valuable product for fusion energy sciences
(build knowledge base on key feasibility issues)

¥Provide excellence in materials science
ÐThis also helps to build support for fusion energy within the

broad materials science community

Topic Fusion benefit Science aspect
Displacement
cascades

Quantification of displacement
damage source term

•  I s the concept of a liquid valid
for time scales of only a few
lattice vibrations

•  T ransient (ps) electron-phonon
coupling physics

Defect migration Radiation damage accumulation
kinetics

•  1 D vs. 3D diffusion processes
•  i onization-induced diffusion

(nonmetals)
Structural material
operating limits

Identify/expand operating
temperature window and
mechanical stress capabilities

•  T hermal creep mechanisms
•  D islocation-defect interactions



Radiation-induced conductivity in Insulators
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Permanent Radiation-Induced Electrical Degradation does
not appear to be of concern for next-step machines



SiC Amorphization
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3 recovery substages are 
observed below 320 K

Analysis of flux dependence shows recovery 
substages are not associated with long range 
point defect migration (F<0.5 up to 380 K)

       Implies that both vacancies and interstitials are
immobile in SiC up to 100˚C (interstitials are mobile

in many other ceramics at room temperature)



Physics of phonon transport & scattering are
being investigated in neutron-irradiated ceramics
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Thermal resistance of different phonon scattering
centers can be simply added if their characteristic
phonon interaction frequencies are well-separated
from one another

Thermal resistance due to radiation-induced defects
(vacancies, dislocation loops, etc.) is proportional to
their concentration



Ionizing Radiation can induce myriad effects in
ceramics

¥Defect production
ÐRadiolysis (SiO2, alkali halides)
ÐIon track damage (swift heavy ions)

¥Defect annealing and coalescence (ionization-induced
diffusion)
ÐAthermal defect migration is possible in some materials



Highly ionizing radiation (dEioniz./dx > 7 keV/nm)
introduces new damage production mechanisms

Swift heavy ions induce surface
protrusions and amorphizationIon tracks produce displacement

damage via inelastic atomic events

430 430 MeV MeV Kr –>MgAlKr –>MgAl 22OO44

430 430 MeV MeV Kr –>MgAlKr –>MgAl 22OO44

710 710 MeV BiMeV Bi –>Al –>Al22OO33

710 710 MeV BiMeV Bi –>Si –>Si33NN44

3.5 3.5 nm diamnm diam..
amorphous coreamorphous core



Investigation of ionization-induced diffusion in ceramics
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Mechanical behavior of a wide range of copper alloys
has been investigated vs. strain rate and temperature
(constitutive equations for deformation and fracture)

0

50

100

150

200

250

0 100 200 300F
ra

ct
ur

e 
T

ou
gh

ne
ss

, 
K

JQ
 (

M
P

a-
m

1
/2

)
Test Temperature (˚C)

CuCrZr

Cu-Al 2O3

CuNiBe

CuCrNb

L-T orientation

0

100

200

300

400

500

600

700

800

0 200 400 600 800

U
lti

m
at

e 
T

en
si

le
 S

tr
en

gt
h 

(M
P

a)

Temperature (˚C)

CuCrZr, ITER SAA

CuNiBe, 
HT1 temper

CuNiBe, AT

GlidCop Al25 (IG0)

1-2x10- 3 s- 1

CuCrNb

¥ CuNiBe has superior properties below 100ûC; CuCrZr and Cu-Al2O3 have best
properties at intermediate temperatures
¥ high temperature limits in CuNiBe and Cu-Al2O3 alloys are associated with grain
boundary phenomena
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Applications to US industry (e.g.,
USCAR) as well as fusion energy
sciences program

Mechanical behavior of copper alloys can be understood on
the basis of current materials science models of deformation



    Radiation damage is inherently multiscale with
    interacting phenomena ranging from ps-decades and nm-m



One of the Most Important Scientific Results From the US/Japan Collaborations
on Fusion Materials has been the Demonstration of Equivalency of Displacement
Damage Produced by Fission and Fusion Neutrons

Fission
(0.1 - 3 MeV)

A critical unanswered question is the effect
of higher transmutant H and He

production in the fusion spectrum

5 nm
Peak damage state in
iron cascades at 100K

 50 keV PKA
(ave. fusion)

10 keV PKA
(ave. fission)

MD computer simulations show that subcascades and
defect production are comparable for fission and fusion

Similar defect clusters produced by fission and
fusion neutrons as observed by TEM

Fusion
(14 MeV)

Similar hardening behavior confirms the equivalency



Low uniform elongations occur in many FCC and BCC
metals after low-dose irradiation at low temperature

Uniform elongation of 
neutron-irradiated V-4Cr-4Ti
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Irradiated Materials Suffer Plastic Instability
due to Dislocation Channeling



Irradiated materials undergo plastic instability
and failure due to dislocation channel formation

Outstanding questions :
• What governs the appearance of a yield point?
• What governs the dose dependence of yield point onset?
• What governs dislocation channel initiation?
• What governs dislocation channel growth? (cross-slip in fcc metals is 
   not well understood)
• What controls channel width?

Plastic flow localization in irradiated metals - An unresolved issue for >30 yrs
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Dislocation Dynamics (DD) is a new computer simulation
method developed at UCLA for modeling fundamental
microscopic mechanical properties

New Understanding (dislocation-defect interactions):
(a) Local heating destroys vacancy clusters;
(b) Shape instabilities allow dislocations to overcome
the resistance of SIA clusters.
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(1) N.M. Ghoniem, B. N. Singh, L. Z. Sun, and T. Diaz de la
Rubia, J. Nucl. Mater, 276: 166-177 (2000).
(2) N.M. Ghoniem, S.- H. Tong, B.N. Singh, and L. Z. Sun,
Phil. Mag., 2001, submitted

Broad Objectives of DD:
1. Understand fundamental deformation mechanisms
2. Provide a physical basis for plasticity
3. Determine stress-strain behavior without assumptions.
4. Design new ultra-strong and super-ductile materials.
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As-Irradiated Post-Irradiation Annealed
350¡C/50 hrsPure Copper

Deformation Behavior in As-Irradiated and Post-Irradiation
Annealed Pure Copper (PNNL & Ris¿ National Laboratory)

Post-Irradiation Annealed Condition
¥ Dislocation cell structure: material deforms

homogeneously at 0.01 dpa
¥ Mixture of channeling and homogeneous

deformation at 0.3 dpa

As-Irradiated, 0.3 dpa
¥ Cleared channels with little to no dislocation movement

between the channels; localized deformation
¥ Large increases in strength (6 to 8x)
¥ Loss of uniform elongation and work hardening capacity
¥ Formation of a clearly defined yield point

U.S. Department of Energy
Pacific Northwest National Laboratory

PI Annealed, 0.01 dpa PI Annealed, 0.3 dpa



Deformation mechanisms in FCC metals
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Irradiation is a useful tool to produce
controlled microstructures for
deformation mechanics studies

Channeling (Disln glide) occurs at higher
temperatures (~300ûC)

Twinning occurs
at lower

temperatures
(<200ûC) and high

strain rates



Unir

Deformation Flow Instability-Localization
¥ Understanding uniform strain loss-flow localization requires close integration of

mult iscale models & experiments. In many cases irradiation may enhance
functional strength.
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Radiation-induced Tensile "Embrittlement" does not
Necessarily Produce Fracture Toughness Embrittlement
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Fracture involves multiple processes interacting from atomic to
structural scales. UCSB is developing multiscale physical fracture
models and new engineering methods of fracture control using small-
scale tests. Research combines theory, models, measurements and
characterization of key processes at all pertinent length scales.

Multiscale Research on Fracture Mechanisms, Mechanics
and Structural Integrity Assessment

δ = 68µm δ = 70µm δ = 72µm

δ = 74µm δ = 76µm δ = 78µm

200µm

Theoretical vs. Observed Master Curve MC Embrittlement Shifts in F82HSize-Corrected Minitest K(T) Data

Tomographic Imaging of Cleavage FEM Simulations of Crack Fields

Multiscale Research on Fracture Mechanisms, Mechanics, 
Models and Structural Integrity Assessment Methods
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Deformation Microstructures: Helium Implantation
316 SS: He implanted at 200 C and strained to 10% at 20ûC

Channeling becomes
significant for implanted
He conditions of
CHe>200 appm

(0.02 dpa)
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Newly Developed Techniques Allow Greater Materials
Science Output From Smaller Irradiation Volumes

3 mm TEM disk is
irradiated in fission reactor

Shear punch test yields mechanical properties data
that correlate with tensile data and can be correlated
with data on conventional (full size) specimens

He and H analyses
on outer rim

Bonded into unirradiated disk to reduce
radioactivity levels and waste generation in

evaluation of microchemistry and microstructures

Fe54-F82H
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Precipitate stability
knowledge derived from

radiation effects studies can
be used to develop highly

creep resistant alloys
(microturbine recuperator)

Microstructure-Mechanical property knowledge derived from Fusion
Materials Science investigations is being transferred to US Industry



Fracture Toughness of Pure Tungsten
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Effect of Thermomechanical Processing and Alloying
Additions on the Fracture Toughness of Tungsten
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Recent Fabrication Successes with Vacuum Arc Remelted Mo-
Re Alloys May be Applicable to BPSX Refractory Components

Ingots of arc melted Mo-Re
are routinely processed
from powder

These ingots have
been fabricated

into precision
components by

extrusion, rolling,
and machining

VAR Mo-Re has exhibited good
weldability and weldment ductility

E.K. Ohriner and J.P. Moore
Radioisotope Power Program



BASE METAL HEAT AFFECTED ZONE

Research performed by
M. K. Miller, Oak Ridge National Laboratory
and A. J. Bryhan,  Applied Materials

   GIE (atoms m -2)
Zr 7.6 x 10 13

B 7.3 x 10 12

C 1.1 x 1013

O           -3.9 x 1012

   GIE (atoms m -2)
Zr 1.3 x 10 13

B 9.9 x 10 14

C 9.9 x 1011

O 1.1 x 1013

•B, Zr (and C) segregation inhibits O embrittlement of grain boundaries
–Etot~20%, transgranular fracture mode instead of typical e tot~3%,
intergranular fracture for Mo welds

•Bulk alloy composition: 1600 appm Zr, 96 appm C, 53 appm B, 250 appm O

FIM FIM

APT atom maps

Atom Probe Tomography Reveals Zr, B and C Segregation
to Grain Boundaries Produces Improved Mo Weldments



Conclusions

¥ A BPSX could contribute in niche areas o f
materials science; larger contr ibut ion
would be in the field of engineering
technology

¥ Ongoing R&D may enable use of improved
materials during BPSX maintenance/repa i r
operat ions


