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Outline
•Effect of low temperature (<0.3 TM) irradiation on the tensile

properties of metals
• Dose and temperature dependence
• FCC vs. BCC metal behavior

•Fracture toughness embrittlement in irradiated metals
•Overview of irradiation creep
•High temperature He embrittlement of grain boundaries
•Overview of deformation mechanisms in irradiated metals

(restricted to radiation hardening/embrittlement regime)
• Microscopic flow localization observations (dislocation channeling)
• Similarities and differences between flow localization phenomena in

unirradiated and irradiated metals
• Practical consequences: e.g., structural design rules for uniform elongation <2%

• Not covered: hardness, fatigue



Overview of tensile testing parameters
The plastic behaviour of a material is usually
measured by conducting a tensile test.  Tensile
testing equipment produces a load/displacement
(F/u) curve which is then converted into an
engineering stress/nominal strain (σ / ε ) curve,
where
σ  = F/A0 and ε = u/l0.
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Definition of quantities usually listed as a
result of a tensile test :

σY   – yield stress (F/A0 at onset of plastic flow)
σ0.2% – 0.2% proof stress (F/A0 at a permanent
strain of 0.2% - when elastic strain ≈ plastic strain)
(0.05-0.1% is sometime quoted)
σTS    – tensile stress (F/A0 at onset of necking)
eTot–– (plastic) strain after fracture, or tensile
ductility.

slope is Young's modulus, E
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(ii) Mechanisms

Radiation damage creates obstacles to dislocation motion
- point defects ( ≡ solute strengthening in alloys)
- small clusters and precipitates ( ≡ precipitates in alloys)
- impenetrable clusters ( ≡ Orowan strengthening in alloys)

- all give ΔσY proportional to (dose)0.3-0.5
obstacles

dislocation

σ
Orowan loop



Dose Dependence of Radiation Hardening in Copper

• Fission and fusion neutron radiation hardening behavior are in good agreement
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Radiation Hardening in Copper: Seeger vs.
Friedel relationships

• Two general models are available to describe radiation
hardening (∆σ) in metals:
–Dispersed barrier model (Seeger, 1958)--valid for strong obstacles

Where M=Taylor factor
α=defect cluster barrier strength
µ=shear modulus
b=Burgers vector of glide dislocation
N, d=defect cluster density, diameter

–Friedel 1963 (also Kroupa and Hirsch 1964) weak barrier model:
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Temperature-dependent radiation hardening in
oxide dispersion strengthened copper
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Irradiation of Austenitic Stainless Steel in Mixed Spectrum
Reactors produces significant hardening up to 500˚C, with

peak hardening at ~300˚C
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Radiation hardening in V-4Cr-4Ti
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Summary of Tensile Properties of Neutron-irradiated Nb-
1Zr in Li-bonded capsules
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Radiation hardening in Fe-(8-9%Cr) steels
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Neutron Irradiation Data Show Low Ductility and
High Hardening of Mo-Re alloys up to 1070 K
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What are the consequences of radiation
hardening?

• Increased strength (good!)
•Decreased tensile elongation (bad!)

– Practical impact/consequences: need to use more conservative structural design
rules for uniform elongation <2%

• For BCC metals, increase in the ductile-brittle transition temperature
and decrease of toughness in the “ductile” regime (can be
catastrophic!)
– Radiation hardening also tends to reduce the fracture toughness of FCC metals



Low uniform elongations occur in many BCC and FCC
metals after low-dose irradiation at low temperature

Uniform elongation of 
neutron-irradiated V and Nb
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Austenitic Stainless Steel exhibits low uniform elongation
after irradiation at temperatures up to ~400˚C

Reduction in uniform elongation requires higher doses
than in simple metals (e.g. Cu, Ni)
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Fracture surface of Irradiated Nb-1Zr shows ductile
behavior, despite low uniform elongation value

F.W. Wiffen, unpublished results



Low uniform elongation in Nb1Zr is associated with
dislocation channeling (localized deformation)

F.W. Wiffen, unpublished results



Examples of tensile curves for pure metals irradiated at ~330 K
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Irradiated Materials Suffer Plastic Instability
(due to Dislocation Channeling?)



This one

C-47

Irradiation does not affect strain in the neck

Example: knife-edge fracture (100%R in A) in Cu

In all materials except Mo the reduction in area at
fracture was the same in irradiated and unirradiated
specimens despite considerable differences in
uniform elongation. The implication is that much
work hardening lost in uniaxial mode is restored
when multiaxial loading prevails.

C-47



Irradiation hardening and embrittlement
(T<0.5TM)
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(i) Phenomenon

• Ferritic and austenitic steels

- increase in yield stress σY and UTS
(Ultimate Tensile Strength)

- decrease in elongation to failure



Overview of dislocation channeling

• Dislocation channeling is a viable mechanism to locally work
soften the matrix
– Shearable obstacles

• Channeling involves localized flow and therefore inhibits
dislocation multiplication
– Limited interaction between dislocation sources

However, …………….
• It is not generally established that the catastophic reduction in

tensile elongation is directly due to dislocation channeling
– High tensile elongations and significant work hardening rates can occur in

irradiated metals that exhibit dislocation channeling



Dislocation channel interactions in Fe deformed
following neutron irradiation at 70˚C to 0.8 dpa

g.b.



2µm 200nm

Channels in V (0.01 dpa) are not fully cleared; they
contain elongated dislocations and loop-like debris

0.012 dpa, 0.1% εu
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1 µm

(b)

Multiaxial loading causes bending, twisting and bifurcation of
channels
Vanadium strained 5% by ball indentation

unirradiated 0.69 dpa neutron irradiation



Dislocation channeling in Fe deformed following
neutron irradiation at 70˚C to 0.8 dpa

500nm500nm

Uniform strain region Necked 
region

Multiaxial stresses in necked region induce operation of numerous
dislocation sources compared to uniaxial stress case



Summary of Dislocation Channeling Parameters
Material Dose

(dpa)
Irrad.
Temperature

Test
Temperature

Channel
width (nm)

Channel
spacing

Reference

Cu ~0.001-0.5 313-323 K 295 K ~50-200 0.5-2.3 µm 9 research groups
Cu ~0.5 ~50˚C 50 K

77 K
295 K

50
70
100

0.8-1.2 µm Howe 1974

CuCrZr 0.3 323 K 323 K 100-300 Singh & Stubbins fatigue
Cu-0.8%Co ~0.001 ~50˚C 295 K 160 1.2-2.3 µm Sharp 1974
Cu-0.05%Al ~0.001 ~50˚C 295 K 240 1.2-2.3 µm Sharp 1974 (channels not

observed in Cu-4%Al)
Au ~0.003 20˚C 295 K ~100 Okada 1989
Ni ~50˚C 295 K ~300 Noda 1977
Pd 0.3 ~50-100 Victoria et al 2000
304L SS 5 (ions)

“
500˚C
“

563 K
295 K

15
50-200 (twins)

Brimhall 1995

Fe-10%Cr-
30%Mn

~0.005 300˚C ~100? F. Abe 1992

α-Fe ~0.38 323 K 323 K 50-200 Singh et al.;Victoria et al 2000
Nb ~0.002 ~400 Tucker 1969
V 0.1-0.8 330 K 295 K 20-80 0.5-2.5 µm Arsenault 1977; Farrell 2002
V-4Cr-4Ti 0.5-5 500-673 K 295-673 K ~50-100 Rice&Zinkle 1998, Gazda 1998
Mo ~0.2 323 K 323 K ~500 Luft 1991; Singh et al.
TZM ~0.2 373 K 373 K 100-200 Singh et al.
Re Pitt 1980
Zircaloy-2,4 425-563 K 293-573 K 40-100 Coleman 1972, Onchi 1980
Au quenched 160-500 Yoshida 1968, Bapna 1974
Al quenched 650-1000 Mori 1969; Tokuno 1987
Dislocation channel width is ~100 nm for a wide range of experimental conditions



In-situ TEM deformation study of dislocation-defect
cluster interactions in quenched gold containing SFTs

- Dislocation pinning and defect cluster annihilation

Y. Matsukawa



Investigation of dislocation interactions with SFTs
SFT annihilation by a single dislocation

Y. Matsukawa



The issue of localized flow (planar slip) has been
the subject of numerous materials science
investigations (unirradiated metals)

• Three general parameters may be considered to influence planar
slip (e.g., Gerold & Karnthaler Acta Met. 39 (1989) 2177; Basinski
et al. Phil Mag. A 76 (1997) 743):
– Stacking fault energy (weak effect)
– Value of yield stress (weak effect)
– Occurrence of short range ordering (solid solution alloys) or ordered

precipitates that are shearable (generally dominant effect)



Plastic deformation mechanisms for dispersion hardened
materials containing work-softening obstacles
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Effect of Irradiation Dose and Strain on
Deformation Modes of FCC Metals
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Tensile test curves for Zircaloy-4
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Deformation microstructure in Zircaloy-4 after
room temperature tensile deformation

1 µm

0.8 dpa, ε=6.3%
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K. Farrell et al. ORNL/TM-2002/66 (2002)



Deformation mode map for Zircaloy-4 neutron-
irradiated at 65-100oC and tested at 25˚C
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Deformation microstructures in 316 stainless steel
after room temperature tensile deformation
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occurs at
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Deformation mode map for 316 SS neutron-
irradiated at 65-100oC and tested at 25˚C

K. Farrell et al. ORNL/TM-2002/66 (2002)



Deformation mechanisms in stainless steel
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Irradiation Creep of Austenitic Stainless Steel will
Generally be of Concern only for High Fluence (>20

dpa), High Stress Environments
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Calculated irradiated Ashby deformation map
for Type 316 stainless steel at low strain rates
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Calculated irradiated Ashby deformation map
for V-4%Cr-4%Ti
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Engineering and true stress-strain tensile curves for stainless
steel before and after spallation irradiation at ~100˚C
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Plastic Instability Stress (σPI) of BCC Metals

•  Plastic Instability Stress (σPI) = the true stress version of Ultimate Tensile Stress
•  Plastic Instability Stress is independent of dose when yield stress < σPI.
•  Yield stress can be > σPI, which is defined only when uniform deformation exists.
•  σPI is considered to be a material constant, independent of initial cold-work or radiation-

induced defect clusters
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Plastic Instability Stress (σPI) of
FCC Metals irradiated near 70˚C

T.S. Byun & K. Farrell, 
Acta Mater. 52 (2004) 1597
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Plastic Instability Criterion  for BCC
metals irradiated near 70˚C
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• Prompt plastic instability at yield occurs when yield stress > σPI.
• σPI is constant for unirradiated and irradiated conditions; implies that σPI is a
criterion for plastic instability
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Plastic Instability Criterion (FCC & HCP) irradiated at ~70˚C
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Radiation Effect on True Stress-True Strain Curve (BCC)

True stress-true strain
curves for A533B steel; the
curves of irradiated
specimens are shifted in
the positive direction by
strains of 0.035 and 0.09,
respectively, to
superimpose on the curve
of unirradiated material.
Irradiation-induced
increases in yield stress
were 132 and 235 MPa,
respectively.

T.S. Byun & K. Farrell, 
Acta Mater. 52 (2004) 1597

• True stress- true strain curve for irradiated material coincides with
unirradiated curve, after translation to account for radiation hardening
– Suggests main effect of radiation hardening is to partially exhaust strain

hardening capacity

132 MPa
235 MPa



Radiation Effect in True Stress-True Strain Curve (FCC)
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material. Irradiation-
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respectively.
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Acta Mater. 52 (2004) 1597

Further work is need to determine importance of dislocation channeling in observed
exhaustion of initial strain hardening capacity



Introduction to Fracture Mechanics of Irradiated Metals

• Crack propagation can lead to failure of structural materials
• The fracture toughness of a material is a direct measure of its

resistance to crack propagation
• For body-centered cubic metals, there is a transition near a critical

temperature from low resistance to crack propagation (brittle) at
low temperature to high toughness at high temperature
– This transition temperature is known as the ductile to brittle transition

temperature (DBTT)
• Sometimes also referred to as “nil ductility temperature”, NDT

• The quantitative value of the fracture toughness of materials is best
measured using dedicated fracture toughness specimens
– Example of a miniaturized compact tension specimen:

11.5 mm 4.6 mm

11
.0

 m
m



Introduction to Fracture Mechanics of Irradiated Metals
(continued)

• Accurate measurement of the fracture toughness behavior of a
material at a single irradiation condition requires >10 specimens
– Typically requires >1 h testing time per specimen

• A useful semi-quantitative monitor of the fracture toughness
behavior can be obtained from notched Charpy impact tests
– Example of a miniaturized notched Charpy impact specimen:

25 mm
3.3 mm

3.3 mm



Fracture Stress for Materials
Containing a Through-thickness Crack

Introduction to fracture toughness
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Irradiation of Austenitic Stainless Steel in Mixed Spectrum
Reactors causes Pronounced Loss in Elongation and

Significant Reduction in Fracture Toughness
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Irradiation of BCC Metals Results in Significant
Decrease of Upper-Shelf Energy and Increase (Shift) of
Ductile-to-Brittle Transition Temperature (DBTT)
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There is a linear correlation between shift of transition
temperature and hardening for BCC metals
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Fracture Toughness of BCC Metals:
Master Curve Approach

• Ludwig-Davidenkov relation provides
a rough estimation of embrittlement
due to radiation hardening

• The measured DBTT depends on numerous parameters,
including strain rate and amount of physical constraint in
cracked sample

• Important parameters such as constraint and
strain rate are included in recent advanced
approaches (Master curve)
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Low temperature radiation hardening causes
fracture toughness embrittlement in BCC metals
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The Operating Window for BCC metals can be Divided
into Four Regimes (red values are relevant for Nb1Zr)

I, II:  Low Temperature Radiation Embrittlement Regimes
– Fracture toughness (KJ) embrittlement: high radiation hardening causes low

resistance to crack propagation (occurs when SU>500-700 MPa)
• Regimes which cause KJ<30 MPa-m1/2 should be avoided (Tirr< ~600 K ?)

– Loss of ductility: localized plastic deformation requires use of more
conservative engineering design rules for primary+secondary stress (Se)

III:  Ductile Yield and Ultimate Tensile Strength Regime (eU>0.02)
– Sets allowable stress at intermediate temperature (very small regime for Nb-1Zr)

IV:  High Temperature Thermal Creep Regime (T>~1050 K)
– Deformation limit depends on engineering application (common metrics are 1%

deformation and complete rupture)

€ 

Se =

1
3
Su

1
3
Su +

E(εU −0.02)
8

 
  
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 
 

εU<0.02

εU>0.02

where εU is uniform elongation, SU is ultimate tensile strength, E is elastic modulus
(additional design rules also need to be considered)

(Tirr< ~900-1270 K)



Stress-Temperature Design Window for Nb-1Zr
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Stress-Temperature Design Window for
Unirradiated Type 316 Stainless Steel
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Operating Temperature Windows  for Structural Alloys in Fusion
Reactors

• Lower temperature limit of alloys based on radiation hardening/ fracture toughness
embrittlement (K1C< ~30 MPa-m1/2)—large uncertainty for W,Mo due to lack of data
• Upper temperature limit based on 150 MPa creep strength (1% in 1000 h); chemical
compatibility considerations may cause further decreases in the max operating temp.

S.J. Zinkle and N.M. Ghoniem, Fus. Eng. Des.
51-52 (2000) 55; S.J. Zinkle et al. STAIF2002
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Operating Temperature Windows  for Structural Alloys in Fusion
Reactors

• Lower temperature limit of alloys based on radiation hardening/ fracture toughness
embrittlement (K1C< ~30 MPa-m1/2)—large uncertainty for W,Mo due to lack of data
• Upper temperature limit based on 150 MPa creep strength (1% in 1000 h); chemical
compatibility considerations may cause further decreases in the max operating temp.

S.J. Zinkle and N.M. Ghoniem, Fus. Eng. Des.
51-52 (2000) 55; S.J. Zinkle et al. STAIF2002
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Helium Embrittlement of Grain Boundaries is of concern at
High Temperatures
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He trapping at nanoscale precipitates within grains is key for inhibiting He embrittlement

However……..  The formation and microstructural stability of these precipitates is
strongly affected by irradiation parameters, in particular the He/dpa ratio

The Degradation of Creep-Rupture Properties and Ductility Can Be Catastrophic



He grain boundary cavities in austenitic stainless steel: effect of
annealing time and applied stress at 750˚C

Braski 
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D.N. Braski



Effect of applied stress on the rupture lifetime of
austenitic stainless steel annealed at 750˚C

• 100 appm He reduces rupture lifetime of stainless steel at 750˚C by 10-100X due to
formation of grain boundary He cavities

10-1

100

101

102

103

104

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

2
0

0

unimplanted
pre-implanted, 300K
pre-implanted, 1023K
"in-beam"

T
im

e 
to

 r
u

p
tu

re
, 

h

Stress, MPa

T
test

 = 1023 K

c
He

 = 100 appm

dc
He

/dt = 100 appm/h

Schroeder and Batflasky, 1983



Fine-scale matrix precipitates can trap He and provide
greatly improved He embrittlement resistance

Yamamoto & Schroeder 
J.Nucl. Mat. 155-157 (1988)
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Cracking is observed in welded metals containing
He (from nuclear transmutations)

Heat affected
zone (HAZ)

Weld bead

Occurs in heat affected zone for low He concentrations
At high He concentrations, cracking also occurs in the fusion zone (weld bead)

HAZ



Effect of transmutant He on welding behavior of metals

• Irradiated materials with He contents above ~1 appm cannot be
fusion-welded due to cracking associated with He bubble growth;
the lower temperatures associated with FSW may allow repair
joining of irradiated materials
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Summary and Conclusions
••Low temperature (<0.3 TLow temperature (<0.3 TMM) irradiation causes rapid) irradiation causes rapid

hardening and reduction in uniform elongation of metalshardening and reduction in uniform elongation of metals
••Uniform elongation is typically reduced to <1% after doses of ~0.1Uniform elongation is typically reduced to <1% after doses of ~0.1

dpadpa
••Responsible mechanisms for loss of tensile ductility (dislocationResponsible mechanisms for loss of tensile ductility (dislocation

channeling, radiation hardening) are currently being investigatedchanneling, radiation hardening) are currently being investigated
••Radiation hardening causes fracture toughness embrittlementRadiation hardening causes fracture toughness embrittlement

and increases in the ductile-to-brittle-transition temperature inand increases in the ductile-to-brittle-transition temperature in
irradiated BCC metalsirradiated BCC metals
•• Irradiation creep is typically of concern for structuralIrradiation creep is typically of concern for structural

materials irradiated to doses above ~10 dpa at intermediatematerials irradiated to doses above ~10 dpa at intermediate
temperaturestemperatures
••High temperature He embrittlement of grain boundariesHigh temperature He embrittlement of grain boundaries

generally becomes important for transmutant He levels abovegenerally becomes important for transmutant He levels above
10-100 10-100 appm appm at temperatures above 0.5 Tat temperatures above 0.5 TMM
••Mechanism based onMechanism based on critical number of gas atoms for unconstrained critical number of gas atoms for unconstrained

cavity growthcavity growth


