
Scientific and Engineering Advances
from Fusion Materials R&D

S.J. Zinkle1, M. Victoria2 and K. Abe3

1Oak Ridge National Laboratory, Oak Ridge, TN USA 
2EPFL-CRPP Fusion Materials Technology, Villigen-PSI, Switzerland

 3Tohoku University, Sendai, Japan

10th International Conference on Fusion Reactor Materials

October 14-19, 2001

Baden-Baden, Germany



OUTLINE
• Fundamental Studies of Radiation-induced Defects
and Their Effects on Material Properties
–Multiscale modeling
–Point defect properties
–Mechanical deformation and fracture mechanisms

• Development of Improved Materials
–Nanocomposited ferritic steel
–Refractory alloys
–Ceramic composites

• Development of Novel Experimental Techniques
–Miniaturized specimens



    Radiation damage is inherently multiscale with
    interacting phenomena ranging from ps-decades and nm-m



Displacement Damage Mechanisms are being
investigated with Molecular Dynamics Simulations

PKAs oriented in the close packed
planes produce enhanced damage
efficiency at low energies compared to
other orientations, due to a planar
defect creation process

Damage efficiency saturates when
subcascade formation occurs

300 eV PKA



Experimental evidence for nanoscale melting during atomic
collisions has been obtained
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One of the Most Important Scientific Results From Fusion Materials Research has
been the Demonstration of Equivalency of Displacement Damage Produced by
Fission and Fusion Neutrons

Fission
(0.1 - 3 MeV)

A critical unanswered question is the effect
of higher transmutant H and He

production in the fusion spectrum

5 nm
Peak damage state in
iron cascades at 100K

 50 keV PKA
(ave. fusion)�

10 keV PKA
(ave. fission)

MD computer simulations show that subcascades and
defect production are comparable for fission and fusion

Similar defect clusters produced by fission and
fusion neutrons as observed by TEM

Fusion
(14 MeV)

Similar hardening behavior confirms the equivalency



Determination of interstitial migration energies in ceramics

• Solve steady state rate eqns:
Di

d2 Ci

dx 2
−αCiCv − DiCiCs + P = 0

Dv
d2C v

dx 2 −αCiCv −DvC vCs + P = 0

• For sink-dominant conditions (CS>1014/m2),
the defect-free zone width is related to the
diffusivity (Di) and damage rate (P) by:

Di =
L P

Ci
crit Cs

Defect-free zones in ion-
irradiated MgAl2O4

Defect-free grain boundary
zones in ion-irradiated Al2O3

10-9

10-8

10-7

10-6

10-5

10 15 20 25 30 35 40

Interstitial Diffusion Coefficient in Ion Irradiated Oxides 
Determined From Defect-Free Zone Widths at Grain Boundaries

In
te

rs
tit

ia
l D

iff
us

io
n 

Co
ef

fic
ie

nt
 (m

2 -s
-1

)

1/kT (eV)-1

MgAl2O4 

Ei
m~0.21 eV

Al2O3 



2.80

2.90

3.00

3.10

3.20

0 200 400 600 800 1000

D
en

sit
y 

(g
/c

c)

Annealing Temperature (°C)

non-irradiated density 3.203 g/cc

s10 Density/Anneal Plot

30 minute Anneal in Air
Hydrofluoric Etch 15 min.

Effect of annealing on the properties of bulk amorphous SiC
• Amorphization causes large changes

 --> density change, -10.8 %
  --> hardness change, -46 %

             --> elastic modulus change, -45 %
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Physics of phonon transport & scattering are
being investigated in neutron-irradiated ceramics
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Thermal resistance of different phonon scattering
centers can be simply added if their characteristic
phonon interaction frequencies are well-separated
from one another

Thermal resistance due to radiation-induced defects
(vacancies, dislocation loops, etc.) is proportional to
their concentration



Irradiated materials undergo plastic instability
and failure due to dislocation channel formation

Outstanding questions:
• What governs the appearance of a yield point?
• What governs the dose and temperature dependence of yield point onset?
• What governs dislocation channel initiation?
• What governs dislocation channel growth? (cross-slip in fcc metals is 
   not well understood)
• What controls channel width?

Plastic flow localization in irradiated metals - An unresolved issue for >30 yrs



Atomistic simulations model the unit interaction of an
edge dislocation with a radiation-induced defect cluster

The simulations are in 
excellent qualitative 
agreement with experiments

Experimental TEM image
by Ian Robertson at UIUC

MD simulation by Brian Wirth at LLNL

Atomistic simulations supported by OFES and ASCI,
In-situ TEM supported by OBES



Plastic flow localization in defect free bands appears
in the Dislocation Dynamics (DD) simulations

The implementation of cross-slip into DD gives rise to the formation of
defect free bands (channels) with a width of 200-300 nm

Spreading of the channels is
restrained by the formation
of dipole segments and the
remaining radiation induced
defect distribution

Nature, August 24, 2000



Deformation mechanisms in FCC metals
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Irradiation is a useful tool to produce
controlled microstructures for
deformation mechanics studies

Channeling (Disln glide) occurs at higher
temperatures (~300˚C)

Twinning occurs
at lower

temperatures
(<200˚C) and high

strain rates
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Discovery of Unprecedented Strength Properties in
Iron Base Alloy

• Time to failure is increased by several orders of magnitude

• Potential for increasing the upper operating temperature of iron
based alloys by ~200°C



Recent work suggests that thermodynamics may be
significantly altered at the nanoscale

O Y Ti 10 nm

Atomic analysis of new nanocomposited
ferritic steel (12YWT) provides clues to its
outstanding creep strength (6 orders of
magnitude lower creep rate than
conventional steels at 600-900˚C)

(Ti ,Y,Cr)mixed oxide: R=2.0 nm; N=1.4x1024/m3 (before and after thermal creep testing)

Original Y2O3 particles convert to thermally
stable nanoscale (Ti,Y, Cr, O) particles
during processing
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Refractory Alloys

• Attractive Thermal/Physical
Properties
– high temperature capabilities
– thermal stress figure of merit
– liquid metal compatibility (Li)
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• Main problems
– low fracture toughness
– low oxidation resistance
– poor mechanical properties

of weldments



BASE METAL HEAT AFFECTED ZONE

   GIE (atoms m-2)
Zr 7.6 x 1013

B 7.3 x 1012

C 1.1 x 1013

O           -3.9 x 1012

   GIE (atoms m-2)
Zr 1.3 x 1013

B 9.9 x 1014

C 9.9 x 1011

O 1.1 x 1013

•B, Zr (and C) segregation inhibits O embrittlement of grain boundaries
–Etot~20%, transgranular fracture mode instead of typical etot~3%,
intergranular fracture for Mo welds

•Bulk alloy composition: 1600 appm Zr, 96 appm C, 53 appm B, 250 appm O

FIM FIM

APT atom maps

Atom Probe Tomography Reveals Zr, B and C Segregation
to Grain Boundaries Produces Ductile Mo Weldments



The fusion materials welding program has successfully
resolved one of the key feasibility issues for V alloys

– Results are applicable to other Group V refractory alloys (Nb, Ta)
– Use of ultra-high purity weld wire may reduce atmospheric purity requirements

Success is due to simultaneous control of impurity pickup, grain size
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US/Monbusho “Jupiter” Program

We Now Have First Radiation-Resistant SiC Composite

Bend strength of irradiated
“advanced” composites show
no degradation up to 10 dpa

1st- and 2nd generation
irradiated SiC/SiC
composites show

large strength loss after
doses >1 dpa
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Forschungszentrum Karlsruhe



Miniaturized push-pull fatigue specimen R&D

Forschungszentrum Karlsruhe



Newly Developed Techniques Allow Greater Materials
Science Output From Smaller Irradiation Volumes

3 mm TEM disk is
irradiated in fission reactor

Shear punch test yields mechanical properties data
that correlate with tensile data and can be correlated
with data on conventional (full size) specimens

He and H analyses
on outer rim

Bonded into unirradiated disk to reduce
radioactivity levels and waste generation in

evaluation of microchemistry and microstructures
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Conclusions

• There have been strong contributions from fundamental studies
(“modelling”) adding to the understanding of behavior of irradiated
materials.

• Similar methodologies(mixture of applied and fundamental R&D) have been
successful in the development of improved materials of technological
significance.



Backup viewgraphs



Fusion materials research must rely heavily on modeling due
to inaccessibility of fusion-relevant operating regime

• Extrapolation from currently available parameter space to fusion
regime is much larger for fusion materials science than for plasma
physics program
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Yield Strength and Uniform Strain in Neutron-Irradiated V-4Cr-4Ti
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Crack Growth in Ceramic Composites is a Potential Lifetime-
Limiting Mechanism Controlled by Microscale Phenomena

Analytical modeling of internal stresses
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Micromechanical Modeling Allows Prediction of
Component Lifetime of Ceramic Composites
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Crack Velocity = 1.7 x 10-10 m/s
at 800-900 C (1073-1173K)

Model verification Predictive capabilities

Irradiation-
enhanced creep of

fibers controls
crack growth below

≈ 1073 K

Model predicts
crack velocity and

crack length

NOTE: Lifetime predicted for older
generation material properties.

More recent materials have
enhanced lifetimes.

U.S. Department of Energy
Pacific Northwest National Laboratory



Multiscale Research on Fracture Mechanisms, Mechanics, 
Models and Structural Integrity Assessment Methods


