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Quantification of small defect clusters is best
performed using weak beam microscopy

• Dark-diffracting defects are visible in
suitably-thin foil regions
• Differentiation between SFTs and
partially dissociated loops requires
observation at B=001 and B=110

Cu, Cu, TTirrirr=90=90˚̊C, 0.5 dpaC, 0.5 dpa



Small defect clusters are not visible in
foils with thickness above ~40 nm
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Essential steps for accurate measurement of defect
cluster densities

• Use very thin regions (t<40 nm)
to count SFTs and small defect
clusters (d<3 nm), using total
magnifications >500 kx

• Count larger (d>3 nm) defect
clusters vs. foil thickness in
“thicker” foil regions (50-200
nm)

• Check for possible defect cluster
invisibility and/or loss of glissile
clusters to foil surface by
analyzing areal cluster density
vs. foil thickness
– Plot should linearly extrapolate to

the origin



Dose Dependence of Defect Cluster Accumulation
• Early studies reported “nearly linear”

dose dependence despite significant
deviation from linearity

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

D
ef

ec
t C

lu
st

er
 D

en
si

ty
 (1

022
/m

2 )

Neutron Fluence, Φt (1022n/m2)

Makin et al (1961)

Total

d>2.5 nm

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2

D
ef

ec
t C

lu
st

er
 D

en
si

ty
 (1

022
/m

2 )

Square Root of Neutron Fluence, Φt0.5 (1011n/m2)0.5

Makin et al (1961)

Total

d>2.5 nm

1x1021 n/m2
4x1022 n/m2

• Dose dependence even for early
studies of irradiated pure metals is
better described by square root
accumulation behavior

Copper



Dose Dependence of Defect Cluster Accumulation

• Data analysis based on unsaturable trap model indicates freely migrating
interstitial fraction is fi~11%
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•Data analysis indicates freely migrating interstitial 
fraction is fi~11% dpaNRT (good agreement with MD)
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Defect clusters in neutron irradiated copper (low T)



Comparison of defect cluster evolution in neutron
irradiated Cu and Ni (low T)
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Black Spot Defect Cluster evolution in
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Peak loop density occurs at ~0.01 dpa



Comparison of the defect cluster accumulation
behavior of irradiated Cu and Fe
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Dose Dependence of Radiation Hardening in Copper

• Fission and fusion neutron radiation hardening behavior are in good agreement
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Radiation Hardening in Copper: Seeger vs. Friedel
relationships

• Two general models are available to describe radiation
hardening (∆σ) in metals:
–Dispersed barrier model (Seeger, 1958)--valid for strong obstacles

Where M=Taylor factor
α=defect cluster barrier strength
µ=shear modulus
b=Burgers vector of glide dislocation
N, d=defect cluster density, diameter

–Friedel 1963 (also Kroupa and Hirsch 1964) weak barrier model:
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Temperature dependence of defect cluster
density in neutron irradiated metals
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Dislocation channeling in Fe deformed following
neutron irradiation at 70˚C to 0.8 dpa
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Effect of Irradiation Dose and Strain on
Deformation Modes of FCC Metals
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Deformation mode map for 316 SS neutron-
irradiated at 65-100oC and tested at 25˚C

K. Farrell et al. ORNL/TM-2002/66 (2002)



Deformation mechanisms in FCC metals
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MD and TEM in-situ deformation studies are investigating
fundamental dislocation-defect cluster interactions

- Dislocation pinning and defect cluster annihilation

Molecular Dynamics simulation (Y. Osetsky)

In-situ TEM observation
(Y. Matsukawa)

3.5e6 Cu atoms, 136 vac SFT (L=4nm),
T=300 K, strain rate=5e6/s



Investigation of dislocation interactions with SFTs
SFT annihilation by a single dislocation



Investigation of dislocation interactions with SFTs
Dislocation pinning by small
SFTs (no annihilation)



Investigation of dislocation annihilation of SFTs



Investigation of dislocation annihilation of SFTs



Effect of Dislocation-SFT Interaction Height (136-
vacancy SFT, T=10K)
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Conclusions
•• Microstructural investigations are a key tool for fundamentalMicrostructural investigations are a key tool for fundamental

understanding of defect accumulation and defect cluster-understanding of defect accumulation and defect cluster-
dislocation interactions in irradiated materialsdislocation interactions in irradiated materials
–– Differences between FCC, BCC metals: fraction and morphology of pointDifferences between FCC, BCC metals: fraction and morphology of point

defect clustersdefect clusters
–– Differences between different FCC metals (e.g., CuDifferences between different FCC metals (e.g., Cu vs vs. Ni). Ni)
–– Details of dose dependence still need to be understoodDetails of dose dependence still need to be understood

•• Continued advances in electron microscopy tools andContinued advances in electron microscopy tools and
computational simulations have enabled similar size scales to becomputational simulations have enabled similar size scales to be
examined via experiment and modelingexamined via experiment and modeling
–– A large difference in accessible time scales for MD and in-situ electronA large difference in accessible time scales for MD and in-situ electron

microscopy still existsmicroscopy still exists

•• Dislocation channeling is a common but not universalDislocation channeling is a common but not universal
deformation mode for irradiated materialsdeformation mode for irradiated materials
–– Dislocations can annihilate defect clusters; detailed mechanism is underDislocations can annihilate defect clusters; detailed mechanism is under

investigationinvestigation

–– Effects of test temperature, strain rate, damage level need further investigationEffects of test temperature, strain rate, damage level need further investigation


