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Fusion Materials Science Mission Statement
• Advance the materials science base for the development of

innovative materials and fabrication methods that will establish the
technological viability of fusion energy and enable improved
performance, enhanced safety, and reduced overall fusion system
costs so as to permit fusion to reach its full potential

• Assess facility needs for this development, including opportunities
for international collaboration

• Support materials research needs for existing and near-term devices

Performing institutions
Oak Ridge National Lab
Pacific Northwest National Lab
Lawrence Livermore National Lab
UC-Berkeley
UC-Santa Barbara
UC-Los Angeles
Princeton University
Rennselaer Polytechnic Insititute
Washington State University
Merrimack College



US Fusion Materials Research Portfolio
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New interatomic potentials have been developed for
vanadium and Fe-He, based on first-principles simulations
Fe-He Calculations: Unexpected stability of tetrahedral site arises from magnetic
interaction
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Molecular Dynamics simulations have found the primary
damage formation is similar for fission and fusion neutrons
• subcascade formation leads to asymptotic behavior at high energies

R.E. Stoller, 2004
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experimental studies



Direct formation of SFTs in Cu displacement cascades based
on molecular dynamics simulations

• Nearly perfect SFTs are formed in cascades within ~50 ps

Yu. N. Osetsky

L=2.3 nm

L=1.3 nm



Tensile Properties of Neutron-irradiated V-4Cr-4Ti
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Low Temperature Radiation Hardening is Important
in Ferritic/martensitic steel up to ~400˚C
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Radiation hardening in Fe-(8-9%Cr) steels
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           Fig. 1  Stress-strain curves of F82H BM (a) and TIG (b)
           irradiated at 573K and 773K in tests at RT
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Deformation microstructures in neutron-irradiated
Fe-8Cr-2WVTa ferritic/martensitic steel (F82H)

Slip plane: (110) and (011)
Slip direction: [111] and [111] 

Dislocation channels

Deformation band

N. Hashimoto et al., Fus.Sci.Tech. 44 (2003)
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Dislocation channel interactions in Fe deformed
following neutron irradiation at 70˚C to 0.8 dpa

g.b.



TEM In-situ deformation: dislocation/defect cluster interactions

SFT
annihilation
by a single
dislocation

Dislocation pinning
by small SFTs (no
annihilation)

Understanding why annihilation
sometimes does not occur is key
for developing improved fusion
materials



MD simulation of dislocation interaction with 8 nm SFT in Cu



Fracture Mechanics Master Curve for F82H
Ferrritic/martensitic Steel

• Constraint Loss and SSV (ASTM) adjustments produces a homogeneous self-
consistent dataset with a common ASTM E1921 To ≈ -103°C
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Eurofer 97 Ferritic/martensitic steel Fracture Toughness:
Size effects and Constraint Study

– Statistical scaling is evident
– Constraint loss is observed
– 4th (b=0.8) series, CL&SL adjustment to be completed

• UCSB collaboration with Rensman (NRG) and Yasuda (JAERI)
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Master Curve Shifts (ΔTo) and He Effects

• Modeled irradiation hardening (Δσy) induced
ΔTo ≈ 0.6°C/MPa

• Peak hardening up to ≈ 600 MPa => large
ΔTo => To ≥ 250°C.

• Spallation proton data suggests at > 600-800
appm He weakens grain boundaries
producing very brittle intergranular facture
that interacts synergistically with Δσy.

• Estimates of combined effects suggest To >
500°C possible - clearly a show stopper

• High concentrations of H may also be
damaging

0

100

200

300

400

K
Jc

 (M
Pa
√m

)

-200 -100 0 100 200

T (°C)

F82H - SINEXT

Unirr. MC
Model
Unirr. - Cor.
Unirr.
Irr. MC
Irr. - 5 mm
Irr. - 10 mm

235°C

0

100

200

300

Δ
T o

 (°
C)

0 100 200 300 400

Δσy (MPa)

ΔT/Δσy = 0.57 (°C/MPa)

F82H Δσy est.

T91

F82H

RPV 

b.

Model

≈ 0.6°C/MPa
RPV

model

lower
strain 

hardening

model

0

100

200

300

K
Jc

(T
) (

M
Pa
√m

)
-250 0 250 500 750

T (°C)

Δσy He/IGF

operating
range



SiC/SiC Composites Development
Reference Chemical Vapor Infiltrated (CVI) Composites for Irradiation Studies

• Hi-Nicalon™ Type-S or Tyranno™-SA3 / PyC(50–150nmt) / CVI-SiC composites have
been selected as the reference materials

• Materials are under fabrication in US/Japan collaboration
• Extensive data generation for irradiated properties (including statistical strength) is

planned.
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Irradiation Effect Studies in SiC/SiC
Composite Properties

• Various mechanical and thermo-physical properties of irradiated SiC/SiC composites are
being evaluated.

• Swelling, thermal conductivity, elastic modulus, tensile strength, shear strength, etc.
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Micromechanical Modeling Allows Prediction of
Component Lifetime of Ceramic Composites
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Compatibility Study
SiC / Pb-Li Static Compatibility

• Good compatibility was observed between monolithic SiC and Pb-17Li at 800° and
1100°C in a static capsule test up to 1000h.

• Planned work includes chemical composition measurement of the Pb-Li after the capsule
test and characterization of SiC specimens.



Irradiation / Collaboration Programs
Coverage of Irradiation Condition by

Recently completed, On-going, and Planned Programs

• Planned irradiation programs cover
most of the conditions of interest for
near-term ITER Test Blanket.

• Data to be obtained will focus on
fundamental and scientifically
valuable properties.



Overview of Radiation Effects Experiments
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Friction Stir Welding may enable joining of numerous
advanced materials (ODS steels, He-containing metals, etc.)

• FSW uses a rotating tool that is translated along the joint to create solid-state
bonding by thermo-mechanically working the material.

• Currently, FSW is used to weld low-melting temperature materials such as Al
alloys using tool steel for tool material.

• The challenge is to develop tool materials that can weld high-temperature alloys
such as steels, Ti alloys, Ni-based superalloys. Recent developmental studies at
ORNL have created several tool materials that successfully welded stainless steel

W-alloy Ir-alloy

SS304 stainless steel



Conclusions

• The US fusion materials program is increasing activities related to
ITER (machine and test blanket modules)

• Underlying deformation and fracture mechanisms at low
temperatures are currently of high interest (due to ITER
environment)

• High temperature deformation and fracture (He embrittlement) is
also of major concern, but is not a major activity due to funding
limitations

• SiC/SiC composite R&D has progressed from initial qualitative
screening studies to measurement of engineering-relevant
mechanical properties (unirradiated and irradiated)


