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ORNL Mesophase-Derived Graphitic Foam E

@ 5 patents, 11 pending, 2000 R&D 100 Award Winner
@ Novel Process and Novel Material

@ Highly ordered graphitic
ligaments
@ Graphitic-like properties
@ Dimensionally stable
@ low CTE - ~2 - 4 mn/in/°C
@ Open Porosity
@ Permeable to fluids

@ Excellent thermal
management material

2000 R&D 100 Award Winner
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Graphite Foam Heat Sinks E

@ Graphite foams have been demonstrated to be
excellent heat sinks

@ However, pressure drop is significant
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Material and Geometry Changes to Reduce ..

Pressure Drop

@ Lower the density (open the porosity)
@ May reduce heat transfer?
@ May also reduce pressure drop?

@ Machine finned structure
@ Dramatically reduces heat transfer

@ Corrugate structure like a HEPA filter

@ Should reduce heat transfer
@ Should also reduce pressure drop?

@ Many variables can affect performance

@ Need to model heat transfer to change structure
virtually and save time and lower design costs
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Heat Transfer in Foam E

@ Model steady state heat transfer

@ Assume heat transfer is similar to flow through
packed bed

h >>d h.. =loca heat transfer coefficient
loc P ot :
Ny = d, = porediameter
K, k, = fluid conductivity
qT,
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Nusselt Numbers E

@ Nusselt number is empirically related to Reynolds
number, foam properties, and fluid parameters

= 0.36 y
I\INu = MNp NRe

Np 4 =0.72
N. = Vf dp h,. = local heat transfer coefficient
Re S d, = pore diameter
f

V; =fluid velocity [m/s]
n, = air kinematic viscosity [15.05 x10°® m¢/s]

@ For the graphitic foam, the constants were experimentally
determined to be:

m =0.0158
y=0.7225
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Heat Fluxes

@ Unit heat transfer is related to temperature
differences and the local heat transfer
coefficient

Q=LWx_ xAXDT

@ However, since total surface area is unknown,
we relate this to an effective heat transfer
coefficient.

loc

Q=L XOT
T,-T,
5 u DT\, = '
heff:Zr(\/ Nuaigtanhe—\/ Nugkfo e - T

%

O
ﬂ

k; = thermal conductivity of fluid (0.02624 W/m-K for air)
ks =thermal conductivity of solid (1800 W/m-K for foam ligament)
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Reynolds Number

==

@ Reynolds number is in the laminar regime

@ Indicates that there is little turbulence
developed in bubbles

Present Materials

Reynolds Number
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Model Results — Nusselt Number E

@ Increasing fluid

velocity increases heat

transfer

@ Higher velocities
results in larger

dependence of Ny, on
pore diameter
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Model Results — Heat Transfer Coefficient E
@ Decrease in pore

d | am ete r Heat Transfer Coefficient

Increases heat

transfer

coefficient

@ Increasing the z
velocity has 3
diminishing 3
returns on heat =
transfer -
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Dimensionless Heat Flux E

Q Decreasing Dimensionless Heat Flux
T Fluid Thermal
pubble diameter Conatity
Increases heat

Present Materials
flux

@ Increasing fluid
velocity increases
heat flux, but with
diminishing
returns o)

Flux
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higher pressure
drops
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Geometric Effects E

Dimensionless Heat Flux as a Function of Geometry
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Pumping Power

@ Dramatic increases in

pumping power as
bubble diameter e . W
decreases e |

@ Dramatic decrease in 0018 1

pumping power as fluid ol :
velocity decreases . |
P 0.008 JII ,'

@ Decreasing pumping [watts] °°% |
power typically o0z |
correlates with 40000 .'
decreased heat T 10 q
transfer - K

@ Balance much be
reached between _ 0 yaodt
pump|ng power and Present Materials
heat transfer
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Ratio of Heat Flux to Pumping Power E

@ Ratio of heat flux to
pumping power
Increases at lower I o WU
flow velocities. — '

800000 1
@ However, there is a y |
maximum in this E“““’””Jll
ratio, indicating
that reducing |

Ratio of Dimensionless Heat Flux to Pumping Power

Present Materials
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far by adjusting
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decrease heat
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Pumping Power versus Heat flux E

@ Heat
transfer is
I|m|ted by 50 microns
the fluid
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Corrugate vs. lower density E

@ Both lowering density (increasing bubble size) or corrugation can
be utilized to reduce pressure drop.
@ Higher density yields higher heat transfer
@ Larger thickness to flow length increases heat transfer
@ Slower velocities increases ratio of heat transfer to pumping power
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Experimental Results E

@ Corrugation works well to reduce pressure drop
without sacrificing heat transfer
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Conclusions

@ A preliminary model for the heat transfer with
graphite foams was developed and presented

@ This model assumes heat transfer i1Is dominated

by the turbulence developed in the pores of the
foam.

@ Proper use of models can help optimize foam
based heat exchangers through parametric
studies.

@ For example, the model predicts the effects of a
geometric change in the system to reduce pressure
and maintain high heat transfer.

@ This type of model should be very useful in

developing revolutionary new and exciting heat
transfer devices.
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