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Operation: Assured Performance

• Deliver the expected ∆T
• Sufficient lifetime
• Refurbishable
• No unexpected failures

− realistic life prediction models
− condition monitoring?

• Cope with off-specification conditions
− erosion
− over-temperature
− dirty fuels
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Issues where understanding is
needed before progress can be made

•What are the common failure modes?
− interplay between oxide growth- and thermally-induced stresses
− role of bond coat chemistry
− PS versus PVD coatings

•How do service-induced changes influence properties (elastic
modulus, thermal conductivity, residual stress, thermal
expansion)?

•How are service-induced changes influenced by duty cycle?
− ‘isothermal’ aging versus thermal cycling
− mechanical loading
− thermal-mechanical loading

• thermal gradient testing?
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t3

Progressive failure of an APS TBC in a high
thermal gradient cycling test

20 µmt1
t2

Sabol, et al.,1998
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Implications of Increased RIT

• Increased rate of phase change in YSZ

• Increased rate of sintering of ceramic layer

• Increased rate of BC oxidation
− increased rate of oxide thickening

− Al depletion
• oxide with the desired properties does not form on γ’ NiAl

− increased interdiffusion between BC and superalloy

• change in oxidation behavior/rate

•  Change in mechanical properties of the BC
– transformation from β to γ’ which has implications for volume change and CTE

– stresses resulting from the associated changes in volume and CTE likely to cause
physical disruption of the coating
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Implications of Increased Cyclic
Operation

• Increased stress generation
− ceramic-oxide scale (CTE)

− oxide scale-bond coating (growth stresses & CTE)

− bond coating-superalloy (phase changes & CTE changes)

• More attention to superalloy-BC matching
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Ceramic Thermal Barrier Layer Needs

• Lower k
• Increased microstructural stability
• Higher sintering temperature
• Higher CTE
• Resistance to erosion

Approaches:

•‘New’ ceramics?  (YSZ, GSZ, what next?)
•New microstructures

– voids, cracks, multilayers, grading
– possible by clever design/processing?
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Bond Coating Needs

• Slower rate of oxide thickening
− promote early formation of α-alumina

− RE oxide doping effects (Y, Hf appear most powerful)

• Improved oxide adherence
− low-S superalloy and BC
− Pt effects (S tolerance; β-phase stability)

− RE effects (S tolerance; control of oxide microstructure)

• Better CTE match with superalloy substrate

• Lower interdiffusion rate (diffusion barrier?)
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Recommendations
• Need to develop a (public) database on modes of degradation

− multiple processing options

• Ceramic top coating formulations (esp. PS) with improved resistance to
sintering probably needed for increased T capability; lower k and higher
CTE would be nice…

• Major TBC needs depend on research implicit in activities to characterize
& understand the modes of degradation:

− ceramic layer issues
− bond coating issues

• optimize ability to form the desired oxide scale
− life prediction models for TBCs
− condition monitoring approaches
− inspection and repair techniques
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Main Thesis: ‘It’s the TGO…’

• Early demonstration of the influence of factors that control alloy
oxidation behavior indicated that TBC life (PS or EB-PVD) was
greatly improved if the substrate formed a ‘perfect’ alumina film

• Suggested that the ultimate  weakest link would be the interface
between the self-grown oxide layer and the metallic substrate

• A major goal is how to form a ‘perfect’ alumina film in practice
–  control of initially-formed film

• Al2O3-YSZ interactions
• α- Al2O3

– minimize the oxide growth rate
– maximize scale adhesion

• manage stress generation
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Unfortunately, there are many issues to
be considered in the optimization of bond
coatings, but some guidance is available..

• NiAl vs NiCrAl 3
• Effects of S, RE, Pt 3
• Effectiveness of different RE additions 3
• Co-doping effects 3
• Interaction of impurities (e.g., C and Hf) ± 3
• Effect of thermal cycle time 3
• Minimum Al level of NiAl for RE effectiveness 3
• Effectiveness of precious metals (Ru, Pd, Ir) vs Pt 3
• Influence of Pt on the CTE of NiAl 3
• Susceptibility to hot corrosion ±3
• Effect of BC surface finish ?
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Improved selective oxidation with Pt
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Effects of C-Hf interactions on NiAl+Hf
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Increased Performance
• Increased firing temperature/RIT

– Q = U•A•∆T where 1/U = [1/h0 + xYSZ/kYSZ +xOX/kOX + xBC/kBC + xSA/kSA + 1/hi]

– if ↑ T0, increased cooling will be needed (= ↑ Q)

– if ↑ xYSZ or ↓ kYSZ, can decrease cooling (= ↓ U)

• Decreased film cooling
– affects h0 (↑ U = ↑ Q), hence need increased cooling

• Increased time between overhauls

• Cyclic operation (peaking)?


