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VHTR Overview
•

 
Of the DOE GenIV

 
reactor concepts, only the Very 

High Temperature reactor (VHTR) is receiving scale 
up considerations (to be built by 2017)

•

 
The first step, however, is to develop and qualify a 
coating, characterization and compacting process for 
the VHTR fuel (but reactor design not yet chosen)

•

 
A LEUCO kernel has been chosen (350μm diam.) and 
German fuel particles are used as a reference fuel

•

 
An overcoating and compacting process has been 
chosen for fabricating 35% loaded compacts (Note, 
fuel compacts never before made using this process)

•

 
Compacts are cylindrical and nominally 12.4 mm x 
25.4 mm 

•

 
Compacts currently being irradiated in INL ATR 
reactor
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VHTR Fuel Manufacturing Steps
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TRISO Fuel for the VHTR
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VHTR Graphite Core and Fuel Block 
Loading Schematic
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Selection of Overcoating and 
Compacting

•
 
Two methods for producing compacts

1.

 

Slug injection
2.

 

Overcoating and compacting
•

 
Want to avoid cracking SiC layer

•
 
Overcoating gentler on particles

•
 
Five major steps in overcoating and compacting 
process: (1) matrix production, (2) overcoating, 
(3) compacting, (4) carbonization, (5) heat 
treatment
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Overcoating and Compacting vs. 
Slug Injection Process
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Matrix Production
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Overcoating
•

 

Overcoating of particles in the past was achieved by slow 
rolling action

•

 

Slow rolling of these smaller particles was found to be 
inefficient, better results were observed with “centrifugal 
overcoating”

•

 

Centrifugal overcoating consists of pre-mixing matrix and 
particles and spinning them at speeds high enough to force 
the mixture to the walls of a circular container

•

 

An agitator is then used to “spray”

 

the particle/matrix 
mixture off the wall of the container and through a mist of 
methanol

•

 

The mist of methanol is achieved with an ultrasonic 
atomizer coupled to a syringe pump

•

 

Matrix is added and this process is repeated until the 
appropriate overcoat thickness, that will lead to a compact 
with 35% packing fraction, is achieved

•

 

Calculations showed that ~160μm overcoat thickness is 
required
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Overcoating and Fuel Particle Packing Fraction 
(FPPF)

•

 

Fuel particle packing fraction agreed upon with the 
programs (Reactor and Fuels)

0.35(vol. of compact)
vol. of TRISO

# of particles in a
compact with 35%
packing fraction

(# of particles) x 4/3π(r + x)3 = vol. of compact

Where “r”
 

is the radius of the TRISO particle and
“x”

 
is the overcoat thickness

**The number of particles is ~4400 per compact
and “x”

 
is ~160μm
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Picture of Overcoater

A

B

C

D

A. Syringe pump

B. Ultrasonic atomizer

C. Overcoater

D. Overcoater speed
controller
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Schematic Representation of Centrifugal 
Overcoating Process—Top View
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Prior to insertion of agitator After insertion of agitator
Agitator
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Sizing Overcoated Particles

•
 

The overcoated particles are taken from the 
overcoater and sized using sieves and an 
electronic sieve shaker

•
 

Three sieves are used, nos. 14, 16, 18
•

 
Through testing, the overcoated particles that 
come to rest on a no. 18 screen (1mm screen 
openings) have the correct overcoat thickness

•
 

The particles that are too big (i.e. +14, 16) can be 
washed with methanol to remove the overcoat

•
 

Particles that are too small (i.e. -18, +20, -20) can 
be re-overcoated

•
 

The yield per overcoating run is ~70%
•

 
The yield per batch of particles is ~98%
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Overcoating, Sizing and Tabling of Particles
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Verification of +18 Sized Particles
Size

0

50

100

150

200

250

300

7
3

0

7
4

0

7
5

0

7
6

0

7
7

0

7
8

0

7
9

0

8
0

0

8
1

0

8
2

0

8
3

0

8
4

0

8
5

0

8
6

0

8
7

0

8
8

0

8
9

0

9
0

0

9
1

0

Mean Diameter

F
re

q
u

e
n

c
y

Size

0

10

20

30

40

50

60

70

80

90

100

9
4

0
9

6
0

9
8

0
1

0
0

0
1

0
2

0
1

0
4

0
1

0
6

0
1

0
8

0
1

1
0

0
1

1
2

0
1

1
4

0
1

1
6

0
1

1
8

0
1

2
0

0
1

2
2

0
1

2
4

0
1

2
6

0
1

2
8

0
1

3
0

0
1

3
2

0
1

3
4

0
1

3
6

0
1

3
8

0
1

4
0

0
1

4
2

0
1

4
4

0
1

4
6

0
1

4
8

0
1

5
0

0

Mean Diameter

F
re

q
u

e
n

c
y

Mean diameter prior to overcoating
=780μm

Mean diameter after overcoating
=1105μm 

Diameter increased by 325μm, an overcoat thickness
of 162.5μm
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Images of Overcoated Particles

Overcoated particles Same overcoated particle with 
overcoat broken off
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layer
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Overcoat layer
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Compaction Mold
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Carbonization and Heat-treatment

•

 

A tube furnace with a quartz 
tube is used to carbonize the 
compacts to 950°C, under 
flowing helium

•

 

The compacts are carbonized in 
a quartz boat (little chance for 
iron contamination)

•

 

An Astro

 

furnace is used to 
heat-treat the compacts to 
1800°C, both vacuum and 
flowing argon atmospheres 
have been tried

•

 

The compacts are heat-treated 
in graphite crucibles (minimize 
contamination)
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Side View of Fully Pressed Compact
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Optical Images of Cross-sectioned 
Compacts

Cross-sectioned compact TRISO layers separated by matrix
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The Fuel Compacts Have Broken 
Records

•
 

The fuel fabricated at ORNL has achieved 
the highest burn-up of any fuel ever 
tested.  

•
 

In March of 2008 the fuel reached 9% burn-
 up and is still going strong.  (Current LWR 

reactors achieve 3-4% burn-up)
•

 
Achieving a higher burn-up allows for 
more efficient use of the uranium in the 
fuel and produces less waste.
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Conclusions

•
 

A method for fabricating compacts has been 
developed at ORNL

•
 

The fabrication method involves overcoating and 
compacting TRISO particles 

•
 

To date, the process has been very robust and no 
broken particles (as a result of the compacting 
process) have been found

•
 

The worked performed at ORNL has produced the 
world’s most successful, in terms of achievable 
burn-up, fuel particles and compacts
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The Research Presented Here Has 
Been Published in Several Journals, 
Making the Cover of TWO



24

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

We Made the Cover of Mechanical 
Engineering Magazine!!

“The Seeds of Fission”

”A new old way to package fuel.  The first nuclear
Vessel turns 50” Mech. E. vol. 126/No.1 Jan. 2004
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Another Journal Cover!  Journal of 
Nuclear Materials

Morris, R.N., and Pappano, P.J., “Estimation of maximum coated particle fuel compacting packing fraction,”

Journal of Nuclear Materials, vol. 361, issue 1, 31 March 2007, pgs. 18-29

 

(Selected for cover)
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