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Hermann : A Faraday Magnhetometer
with a Personality
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leu of Group Augmented by
Parties and Sports




One of Many Group Softball Teams:
“Einstein’s Relatives”
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Surface Science Experiments as

PostDoc In Brian’s Group:

Oxidation of Nickel Near Curie Temp
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FIG. 3. Logarithm of the Ni oxidation rate dx/dt at

Oﬁ,] x=115 A vs inverse absolute temperature.
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If data above T, and below T,
Fit to Arrhenius expression,

R (oxidation rate) = A e E/kT

Apparent change in activation
Energy of 1 eV! Why so large,
Magnetic energy scale = kT,
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Sublimation rate of Co Metal Near Curie
Temperature
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FIG. 1. Schematic diagram of the apparatus used
for the cobalt sublimation rate measurement (see text 0.0l 2
for details), F o
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FIG. 2. Logarithm of the Co deposition rate vs in-
verse absolute temperature for two different Co sam-
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If Data Fit to Arrhenius laws Above and Below
T., Apparent Change in Activation energy of
1eV : Not Physical ! Energy Scale of order kT
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FIG. 3. Magnetic contribution to the activation barrier for Co sublimation E,(T) vs reduced temperature 7/7T ¢
generated from the data shown in Fig. 2 and Eqgs. (1) and (2). The solid line for 0=7/7¢ < 1 in the figure and its
inset represents the best fit of Eq. (3) to the data and corresponds to A = 2 (see text for explanation).
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Loading yet another Co foil into the UHV System
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Oscillatory Oxidation of CO Over a Pt, Pd
or Ir Catalyst- when and why does it

occur? Pt catalyst

CO +0, co,

Experimental

e T
Experiments done in a flow reactor. o ﬂ ﬂl | T

L

A fixed mixture of CO and O, gases were__ T
flowed over a Pt foil. For a r;nge of WM dm W “

temperatures and gas compositions e | il NN 7
The rate of CO, production oscillates JULUUUI
in time, Why? o TN "“
UL LI LI

Surface Science 114, 381 (1982) . ”“ I N
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Key ldeas:

1. CO chemisorbed to Pt surface

2. O, dissociates and chemisorbs to surface

3. CO and O react on surface to form CO,

4. Approximate rates of various steps known in
great detaill

5. These rates indicate millions of monolayers
react on Pt surface/sec (Otherwise your
catalytic converter wouldn’t work)

Why are observed ocillations so slow (minutes)?
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Aha ldea:
Metals exposed to oxygen oxidize
Metal oxides exposed to CO are reduced

Time scale for these reactions on Pt consistent with
period of oscillations

The kinetics of the oscillatory oxidation of CO can be simulated by
considering equations which govern the time evoiution of three quantities
[11,17], namely, the fractional coverage of chemisorbed oxygen on the catalyst
surface (#,), the fractional coverage of chemisorbed CO (#,), and the fraction
of surface sites assumed to be blocked by oxide formation (6,):

d8,/dr= Py k(T)(1—6, — 8, = 8,)°

—~Je (T) 8,05 =k (T) 8,(1=48,), (1)
46, fdt= P k(1 —8,—0,—8,)—k_,(T) @

—ky(T) 6,6, — ko(T) 8,6, (2)
d8, /dr=k_(T) 6,(1 —8,) —k_.,(T) 8,0,. (3)

Each of the terms in this set of coupled differential equations is explained in
detail below:



LH reaction on surface is multivalued for a
range of temperatures and gas compositions,
I:)CO/I:)OZ
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Fig. I. Rate of CO, production versus the amount of subsurface oxygen (#) for T=523 K and

OAK P&s =0.1. Other kinetic parameters used are listed in table 1.
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Parameter Region Where Oscillations Should
Occur

Fig. 2. Three-dimensional representation of oscillatory volume calculated using egs. (17) and (2').
The bold lines enclose a pocket-shaped volume which extends indefinitely in the log(k| )
direction. Also shown are the approximate locations of three specific experimental oscillatory

points for Pt, Pd and Ir. UT-BATTELLE




Comparison of Experimental and Calculated
Oscillations

a) Experimental b) Theorelical
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Fig. 4. (a) Expenimentally obtained oscillations in the rate of CO, production over Pt for various
OAK RIDGIE  temperatures between 522 and 550 K, with Peg /Po, =0.01. (b) Calculated oscillations in the rate
U. S. DEPAR1 of CO, production using rate parameters shown in table 1 and P¢q=0.1 BATTELLE



Comparison of Calculated and Experimental
Regions (Temperature, Gas Composition) Where
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Oscillations Occur
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Fig. 3. (a) Experimental upper (@) and lower (A) temperature bounds for oscillatory behavior
versus Peg /P, Reproducible oscillations over Pt were found everywhere within the region
defined by these boundaries. (b) Theoretical upper (@) and lower (A) temperature bounds for
oscillatory behavior versus P&, Other kinetic parameters used are shown in table .
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Changes of shape of oscillations with
temperature are well produced by model
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Fig. 5. (a) Experimental-log of the reaction rate versus inverse absolute temperature on th
branch (@) and lower branch (&) for Peo /P, =0.01. (b) Theoretical log of the react
versus inverse absolute temperature on the upper branch (&) and lower branch (@) for P¢
Other kinetic parameters used are shown in table .

T(K)

550 540 530 520
0.1 T T t T 1 T T ]j
E a) Experimental .
E - 4
o
=z
o
= 0.0 =
(& -
= - -
= r
2 C ]
L1 i i [ ¢ L]
18.0 18.2 18.4 18.6 18.8 19.0 19.2
10477 (k™)
TiX)
550 540 530 72 A
0.1F ) Theoreticol E
[ & ]
T§ L ]
= )}
== L
[=
= 47 keal/mole
= 0.0l 4
< o 1
e } K
(=) -
o L ]
L \ J
L A
I (| by

R S T

18.2 184 1B6 1BB 19.0 192 194
104/ (K™

Fig. 6. (a) Experimental log of the induction rate (1/1;,) versus inverse absolute temperature for

Pco/Po,=0.01. (b) Theoretical log of the induction rate versus inverse absolute temperature for

P¢o=0.1. Other kinetic parameters used are shown in table 1.
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Continuing UCSD Tradition of Mixing Science
and Softball- “Stonefingers” 2004 Champs
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Parameters used to Simulate Oscillations

Table |

Parameters for theoretical fit to Pt data; all kinetic rate constants are assumed to vary with
temperature as k(7)=k; exp(—E, /RT)

Rate constant Value at 550 K Activation Prefactor
(s~ energy s 1)
(kcal /mole)
O, adsorption: Py k(T) 10,000 I 2:5% 104
CO adsorption: Pegk, 1,000 0 1.0x103
CO desorption: k _,(T) 300 20 2,7% 100
LH reaction: k4(7) 100,000 10 9.4 10"
Oxidation: & (T) 0.11 [ 28% 10"
Reduction: k 4(T) 6.5% 1073 10 6.1 10
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