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NUCLEATION AND GROWTH OF HELIUM-VACANCY CLUSTERS IN IRRADIATED METALS. PART 
II. A GROUPING METHOD FOR AN APPROXIMATE SOLUTION OF TWO DIMENSIONAL KINETIC 
EQUATIONS DESCRIBING EVOLUTION OF POINT DEFECT CLUSTERS TAKING INTO ACCOUNT 
BROWNIAN MOTION OF THE CLUSTERS—S. I. Golubov, R. E. Stoller, S. J. Zinkle (Oak Ridge National 
Laboratory)* 
 
OBJECTIVE 
 
The objective of this work is to develop kinetic models describing the nucleation and evolution of 
radiation-induced defect clusters. Current work includes the modification of a previously-developed 
grouping method used to obtain a solution for the two dimensional kinetic equations describing gas 
assisted vacancy cluster formation in irradiated materials. The new model can account for the 
coalescence of clusters driven by Brownian motion.  
 
SUMMARY 
 
Nucleation, growth and coarsening of point defect clusters or secondary phase precipitates are of interest 
for many applications in solid-state physics. As an example, clusters nucleate and grow from point 
defects (PD) in solid under irradiation. In typical nucleation, growth and coarsening problems, a master 
equation (ME) is constructed that summarizes the large number of equations needed to describe the 
evolution process. When only the mobility of point defects and their reactions with the clusters are taken 
into account the ME takes the form of a differential equation known as the continuity equation in cluster 
size space. A new grouping method was developed by Golubov et al. for both the one-dimensional ME, 
which describes evolution of dislocation loops under irradiation or ageing, and the two-dimensional ME, 
which describes gas-assisted nucleation of voids or bubble formation in irradiated metals [1, 2]. However 
it has been shown that mobility of the clusters (e.g. He-vacancy) leading to coalescence, may play a key 
role in their evolution, particularly in the case of annealing of He implanted metals. The ME in the case 
becomes of the integro-differential type which complicates the numerical solution. The coalescence of 
clusters has been treated by different calculation methods (see e.g. [3-9]) but it has not been subjected to 
any specific grouping method of the type just described and this work intends to fill this gap. In the 
present work, the grouping method proposed by Golubov et al. [1] for the two-dimensional ME is 
generalized to take into account the coalescence of the clusters. An application of the method to the 
problem of helium bubble evolution which takes place during annealing of He implanted stainless steel is 
presented.   
 
PROGRESS AND STATUS 
 
Introduction 
 
Precipitation of helium introduced into metals by (n,α) reactions that occur in fission and fusion reactors 
influence microstructure evolution materials. It has been established that helium atoms assist the 
nucleation and growth of cavities in irradiated materials leading to swelling and mechanical properties 
changes. The literature contains several partial treatments of the problem where both coarsening 
mechanisms, namely Ostwald ripening (see discussion in [1]) and bubble migration and coalescence [3-9] 
have been considered. However an accurate treatment of the second mechanism problem is complicated 
and most previous work has been done in a semi-quantitative way [7,13,14]. When calculating bubble 
coalescence under annealing conditions, it has commonly been assumed that bubbles maintain 
mechanical equilibrium during their evolution, which may not be the case. Moreover, very little has been 
done to calculate bubble evolution while taking into account both coarsening mechanisms simultaneously.  
It has been shown [1] that for the case when cluster evolution is driven by only mobility of point defects, 
the simplest and accurate grouping method may be obtained when size distribution function (SDF) within 
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a group is approximated by a linear function. Such an approximation maintains the identity of the grouped 
ME with the original one, while satisfying the conservation laws for both the total number of clusters and 
the total number of point defects accumulated in the clusters. However the calculation of bubble 
coalescence has not been subjected to any specific grouping method of the type mentioned. It appears 
that the grouping method developed in [1] can be generalized to take into account bubble migration and 
coalescence and this is the objective of the present work. It has been shown that in the framework of a 
generalized grouping method describing the evolution of the cluster SDF equal accuracy can be obtained 
for the general case when the evolution is driven simultaneously by cluster interactions with mobile point 
defects, and by Brownian motion of the clusters.  
 
Master Equation 
 
To describe the evolution of He-vacancy clusters driven by reactions with mobile point defects and 
Brownian motion of the clusters, the following ME has to be solved in the two-dimensional phase space of 

,x m  
 

( , , ) ( , , )( , , ) ( , , ) ,x x m m
BM

df x m t df x m tJ x m t J x m t
dt dt

+∇ +∇ =  (1) 

 
where ( , , )f x m t  and  are the SDF (the number density of clusters containing x 
vacancies and m He atoms) and fluxes of clusters in x and m-spaces, respectively. The fluxes are 
determined by the reactions of clusters with point defects 
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where the coefficients and  are the reaction rates for capture 
(P) and evaporation (Q) between the mobile point defects and clusters leading to a change in the cluster 
of size 

( , ), ( , , ), ( , ),x x mP x t Q x m t P x t ( , , )mQ x m t

x  and , respectively. m
 
The right hand side of the Eq. (1) represents the rate of change of the SDF caused by Brownian motion 
and coalescence. It may be expanded as follows:  
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In Eq. (3) 'Λ  is the collision cross section between the clusters containing ' ', '' 'x m x m ', 'x m  and '', ''x m  

vacancies and He atoms and ( )xδ  is the Kronneker delta. In the case of Brownian motion  may 
be written in the following form: 

' '',x x ' ''m mΛ

 

( ) [1/32 2 1/3 '' 1/3
' ', '' '' ' ' '' ''48 / ( ') ( ) ,x m x m x m x mx x D Dπ  Λ = Ω + +  ]  (4) 
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where  is the atomic volume, '  and  are diffusion coefficients of sizeΩ 'x mD '' ''x mD ', 'x m  and 

'', ''x m clusters. The first term on the right hand side of Eq. (3) describes the rate of decrease in number 
density of size ,x m  clusters via collision of the clusters with all other clusters except the ,x m  clusters. 
The second term describes coalescence of two ,x m  clusters. Note that a multiplier of 2 takes into 
account that the coalescence of the clusters leads to the disappearance of two clusters of the same size. 
The third term describes the formation of ,x m  clusters via collisions between smaller clusters which 
satisfy the equations: 
 

' '', ' ''.x x x m m m= + = +   (5) 
 
The ME in the form of Eq. (1) leads a set of rate equations for clusters of each size in the range of 
practical interest. It has already been pointed out [1,2] that for practical purposes it is necessary to 
consider clusters containing such a large number of point defects (or atoms) that the numerical solution of 
Eq. (1) becomes difficult. The grouping method developed in [1] permits the number of equations needing 
to be greatly thus providing a tool which can be useful for numerical solution of Eq.(1). Below the 
grouping method generalized to take into account coalescence of clusters is presented. 
 
The Grouping Method  
 
Following [1], the cluster SDF is divided into a series of groups with widths 

which include the clusters of the sizes 1,i i i j j jx x x m m m−∆ = − ∆ = − 1,−
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respectively. The subscript  indicates the number of a group in i x − space and the subscript j  indicates 

the number of a group in m space. Thus each group consists of − ,i j i jn x m= ∆ ∆  numbers of clusters of 
different sizes and is defined by the double index “ij”. 
 
Follow [1] let us approximate ( , , )f x m t  by a linear function within a group  of the type ,i j
 

, , ,
, 0 1 1( , ) ( ) ( ).i j i j i j
i j x i m jf x m L L x x L m m= + − < > + − < >  (7) 

 
where <> denotes the average number of vacancies and He atoms in the group of clusters. As can be 
seen from Eq. (7) each group of clusters is defined by three coefficients, . Thus, the kinetic 
equation for the grouping method is formulated as a set of three equations for the coefficients in each 
cluster group. It has been shown [1] that in the case where evolution of the clusters is driven by only 
reactions between clusters and point defects, the equations for  are given by  
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where 2 ,iσ σ  are the dispersions of cluster sizes in the group, which are given by 
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For the case when Brownian motion of clusters takes place, the SDF is changed in accordance with the 
right hand side of Eq. (1). Thus, the final form of the kinetic equations in the framework of the grouping 
method has the form 
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To derive the rates 
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 , the two following assumptions are made:  

(a) diffusion coefficients of all clusters within a group are equal to each other 
(b) collision of any cluster within a group pq with any cluster within a group ' 'p q  creates a cluster, which 
belongs to a single group ij  satisfying the following inequalities 
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The first assumption leads to a simple situation in which the collision rates of any particular size cluster 
within a group with any size cluster within another group are equal to each other. As a result, clusters of 
all different size inside a group coalesce with the same rate, i.e. they can be considered as a bunch of 
single size clusters. Since the cross section for cluster coalescence is proportional to the product of the 
cluster densities, which are determined by the zero order coefficients  only ( ), the 
rate equation for the coefficient can be written similarly to that of Eq. (3): 
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The only difference being that instead of the Kronneker delta in the last term on the right hand side, the 
indexes pq and ' 'p q  have to satisfy Eq. (13). The first term on the right hand side of Eq. (14) describes 
the rate of decrease of number density of the ij group clusters via collision of the clusters with all other 
clusters except clusters of same group. The second term describes coalescence of the ij group clusters 
with clusters in same group. Note that a multiplier of 2 accounts for coalescence of the clusters that leads 
to the disappearance of two clusters of the same group. The third term describes the formation of ,x m  
clusters in ij group via collisions of clusters from smaller size groups. 
 
In order to derive equations for the two other coefficients, , one needs to calculate the rate 
of change of the total number of x and m type defects accumulated in the group  fed by the coalescence. 
These are given by [1] 
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Taking into account the assumption (a) mentioned above, it is clear that coalescence of the ij group 
clusters described by the first and second terms on the right hand side of Eq. (14) does not change the 
coefficients since the change of values  is fully described by the change of the 

coefficient  . However this is not the case for coalescence described by the third term on the right 

hand side of Eq. (14) since a sum of the average sizes of 

, ,
1 1( ), ( )i j i j
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,
0
i j

, ,i j i jS M ,

L
pq  and ' 'p q  groups is not equal to the 

average size of resulting ij group. Taking into account conservation of the total number of x and m type of 
defects accumulated in pq , ''p q  and ij cluster groups, one can find the following equations for these 
coefficients: 
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Note that similar to Eq. (14), the indexes pq and ' 'p q in Eqs. (16) have to satisfy Eq.  (13). Thus, the set 
of equations (14) and (16) complete the description of evolution of the cluster SDF caused by 
coalescence within the group method. Equations (12), (14) and (16) together with Eqs. (8)- (10) describe 
the evolution of SDF within the group approximation taking into account both point defects and cluster 
mobility. To illustrate the applicability of the method, these equations have been used to calculate the 
evolution of He bubbles taking place during ageing in pre-implanted stainless steel [10]. Note that the 
grouping method presented above can be used for both irradiation and ageing, so the calculations 
presented here consist two parts: (1) implantation of He atoms in the material and (2) annealing of the 
He-implanted material. 
 
Evolution of He Bubbles Under Irradiation and Annealing  
 
Model description 
 
In order to use the grouping method to describe the evolution of He-vacancy clusters one needs to 
specify the fluxes , the diffusion coefficient for the Brownian motion of the clusters, 
and to set up the equations for mobile point defects with initial and boundary conditions. In Ref. [1] it was 
shown that for the case where concentrations of 3-D diffusing PDs, C t , are measured in atomic 

fractions, the rates  and Q x in Eq. (2) may be written as follows 
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 ,   are the diffusion coefficients of 3-D diffusing vacancies and 

interstitials, 

,vD Di
E x m  is the binding energy of vacancy with a cluster of size x containing  gas atoms, 

 is the Boltzmann constant, and T is absolute temperature. The binding energy in Eq. (17) is given by 
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where  is the vacancy formation energy,f
vE ( )1/322 4 / 3α γ π= Ω  and γ  is the surface energy. The 

compressibility factor, ( , / )Z T m x , is computed using the expression derived by Manzke and Trinkaus 
[11,12] 
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In Eq. (20) V  is the He atomic volume is measured in cubic angstroms. Note that Eqs. (20) is written 

assuming that the volume of the cluster containing x vacancies, V,  is equal to V .  
m

( ), ,mP x m t
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In the second Eq. (2)  is the rate of helium absorption by an ,x m  cluster and Q x  is 

the rate of helium resolution from the clusters. The coefficients 
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here in the simple form similar to that for vacancies in Eq. (17). Thus, in the present calculations 
 and Q x  are computed as: 
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where  and ( )HeC t HeD  are the concentration and diffusion coefficient of He atoms by the interstitial 

mechanism,  is an activation energy for helium resolution from the clusters. Taking into account Eqs. 

(17) and (21), the evolution of mobile defect concentrations C t   may be presented as 
follows 
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where  are the generation rates of vacancies, self interstitial atoms (SIAs) and He atoms, 

respectively, 

, ,v i HG G G

Rµ  is the coefficient describing the recombination reaction between SIA and vacancy,  

,v iZ Z  are the capture efficiencies of dislocations for vacancies and SIAs, respectively, ρ  is the dislocation 

density,  is the thermal equilibrium vacancy concentration,  is the maximum number of He atoms 
associated with a single vacancy (see e.g. [15-17]). The generation rates vacancies and SIAs are given by 

0vC 0m
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where G  is the generation rate calculated using the NRT model,  and NRT rε  is a fraction of the point defects 
recombined during cooling phase of cascades.  
 
The migration of the clusters is assumed to be caused by mass transport on the bubble surface (see e.g. Ref. 
[18]) 
 

41/33 ,
2ij S

i

D D
rπ

 Ω
=  < > 

  (26) 

 
where  is the surface diffusion coefficient, (0) exp( / )S SD D E k T= − B ir< >  is the mean radius of the ij 

group of cluster, and 
1/3

i ir x < > 
 

3
4π
Ω

< > = . 

 
Eqs. (8)-(10), (12), (14) and (16)- (26) have been used to calculate He bubble evolution in a stainless 
steel under  irradiation and annealing. 
 
Experimental data and parameters used in the calculations 
 
As discussed in Ref. [10], specimens of model austenitic alloy P7 (Fe-17Cr-16.7Ni-2.5Mo) were implanted 
with a 10 to 50 appm He at room temperature and subsequently annealed for one hour at temperatures 
between 600 and 900oC. The temperature during implantation was <200oC and the He implantation level 
in specimens used for the annealing varied between 32 and 47 appm. Helium bubble data obtained after 
one-hour annealing are summarized in Table 1. 
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Table 1. Summary of bubble microstructures observed after 40 appm helium implantation in solution-            
                       annealed P7 and subsequent annealing for one hour [10] 
 
 

Helium 
implanted 
(appm) 

T ( oC) Bubble 
density 
(1021m-3) 

Average 
bubble 
radius (nm) 

Swelling 

32 600 - -  
44 700 8.25 0.82 1.82*10-5 

37 750 6.33 1.09 3.2*10-5 

47 800 6.66 1.57 9.7*10-5 
41 900 2.15 1.99 6.7*10-5 

 
As can be seen from the table, bubbles remained invisible after annealing at 600oC. At higher 
temperatures bubble evolution follows normal coarsening, i.e. the average size of bubbles increases and 
density decreases with increasing annealing temperature. Note that the small increase in bubble density 
between 750 and 800oC probably is a result of the higher level of implanted helium in the specimen used 
for annealing (see calculated helium content at this temperature in Table 1 in [10]). 
 
It is interesting to note that swelling (see last column in Table 1) at all temperatures is very close to that 
introduced during helium implantation (about 4.0*10-5 assuming that all implanted He atoms survived in a 
He-vacancy cluster). Thus one may conclude that He emission from bubbles at all temperatures is low 
 
The calculations in the present work have been done to illustrate the capability of the grouping method. 
Thus to simplify calculations the implantation temperature is chosen to be 100oC and the helium 
implantation level is considered to be equal to 40 appm in all specimens. Accordingly, the He implantation 
parameters used in our calculations are summarized in Table 2. 
 
            Table 2. The He implantation parameters in solution-annealed P7 used in the calculations
 

Helium generation rate, GHe 2.0*10-3 appm/s 
Implantation temperature 100oC 
Displacement rate during implantation, GNRT 5.0*10-7 dpa/s 
Implantation time 2.0*104s 
Displacement dose 1.0*10-2 dpa 
Helium implantation level 40 appm 

 
The calculations have been performed in two steps:  
 
1. Helium pre-implantation regime, which is described by the concurrent processes of Frenkel pair 
production and He implantation 
2. Calculations of bubble evolution during thermal annealing at a given temperature to predict the 
microstructure obtained. 
 
The initial conditions for the mobile defects and boundary conditions for the SDF for step 1 have the 
following form: 
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In addition, it is assumed that the smallest clusters (x=1) are immobile and can be filled with up to 4 
helium atoms (see e.g. Ref. [15-17]). Material parameters used in the calculations are given in Table 3. 
 
                                           Table 3. Parameters used in the calculations 
 

Recombination fraction, rε  0.75 

Effective displacement rates,  GNRT(1-εr) 1.25 *10-7 dpa/s 
Helium generation rate, GHe 2.0*10-3 appm/s 
Recombination coefficients, He

R Rµ µ=  5.0*10+20 m-2 

Atomic volume, Ω 1.15*10-29 m-3 
Vacancy diffusion coefficient, Dv 
pre-exponentional factor 
migration energy 

 
8.0*10-05 m2/s 
1.40 eV 

SIA diffusion coefficient, Di 
pre-exponentional factor 
migration energy 

 
8.0*10-06 m2/s 
0.15 eV 

He atom diffusion coefficient, DHe 
pre-exponentional factor 
migration energy 

 
8.0*10-06 m2/s 
0.15 eV 

Dislocation density, ρd 1013 m-2 
He resolution energy, Eres 2.3 eV 
Surface energy, γ (3.4-1.4*T/1000) J/ m2  
Dislocation capture efficiency for vacancies, Zv 1.00 
Dislocation capture efficiency for SIAs, Zi 1.25 
Dislocation capture efficiency for He atoms, ZHe 0 
Rate of radiation resolution, A 0 
Surface diffusion coefficient, DS 
pre-exponentional factor, D(0) 
migration energy 

 
(1.6*10-6-8*10-5) m2/s 
1.40 eV 

 
Results 
 
Cluster evolution during implantation 
 
As mentioned above, the first step in the calculations is to use the set of equations for the SDF formulated 
above within the grouping method to calculate helium implantation at 100oC with the irradiation 
parameters given in Table 1. Since the implantation temperature is below recovery stage three, vacancies 
at this temperature are immobile. The evolution of He-vacancy clusters therefore is driven by the mobility 
of interstitial He and self interstitial atoms. The calculations are carried to a dose of 10-2 dpa where the He 
concentration reached a level of 40 appm. It is found that all He atoms are accumulated in clusters of the 
smallest size x= 1. The SDF obtained during the calculations is used as input to the subsequent 
calculations of cluster evolution during annealing at temperatures of 600o C and above.  
 
Cluster evolution during annealing at 600oC  
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As can be seen from Table 1, helium bubbles have not been found in specimens annealed at 600o C for 
one hour. Thus, the calculations of annealing at this temperature could be used to test the efficiency of 
different mechanisms and parameters used for causing cluster evolution. The calculated results for the 
number density and average size of the clusters obtained for different values of the cluster mobility are 
presented in Figs. 1 and 2. The upper curves in Fig.1 correspond to the total number density of the 
clusters, and the bottom ones correspond to the number density of visible clusters, i.e. clusters with 
radius larger than 0.5 nm.  
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Fig. 1. Calculated time dependence of the bubble density obtained for annealing at 600oC at different 
magnitudes of bubble diffusivity. 
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Fig. 2. Calculated time dependence of the average bubble radius obtained for annealing at 600oC with 
different values of bubble diffusivity. 
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It can be seen from the Figs. 1 and 2 that in the case where the cluster mobility is not taken into account 
(marked on the plot as “No BM”) there is very limited cluster evolution. This is related to the fact that 
without Brownian motion the driving force for cluster evolution is emission of He atoms from the clusters 
which is very inefficient at this temperature. Thus, one may conclude that cluster mobility under annealing 
is the main driving force for cluster evolution. As reference points on Fig. 1 and 2, the measured values of 
bubble density and size after annealing at 700oC are also presented. Comparing the calculated results 
with the reference points in Fig. 2, one may conclude the calculation results obtained for 

 agrees with the observations since in this case the bubble size is too small to be 
detected by TEM.  

(0) 6 21.6*10 /D m−= s

 
The calculated size distribution functions of bubbles after annealing for one hour at 600oC for different 
values of cluster mobility are presented in Figs. 3a, 3b and 3c. 
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Fig. 3a. Size distribution function of gas bubbles for simulated annealing for one hour at 600oC with the 
pre-exponential factor equal to 8.0*10-5 m2/s. 
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Fig. 3b. Size distribution function of gas bubbles for simulated annealing for one hour at 600oC with the 
pre-exponential factor equal to 8.0*10-6 m2/s. 
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Fig. 3c. Size distribution function of gas bubbles for simulated annealing for one hour at 600oC with the 
pre-exponential factor equal to 1.6*10-5 m2/s. 
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As can be seen from Fig. 3, the shape of the SDF in all cases is quite similar; all clusters are 
concentrated along a certain trajectory in x,m-space. Close analysis shows that along this trajectory, the 
gas pressure in the clusters is nearly constant, i.e. all clusters are over- pressurized with respect to the 
equilibrium value caused by surface tension ( 2 / clrγ ). Such a situation may be rationalized by taking into 
account that when coalescence of clusters is the main mechanism of cluster evolution, the total number 
of vacancies and He atoms accumulated in clusters are conserved keeping the ratio < >  inside 
clusters close to a constant. This in turn leads to constant pressure inside the clusters. As a result, the 
mean cluster size does not follow the law< > , which is predicted for the case when all bubbles are 
considered to be in equilibrium. The actual increase in bubble size is found to be slower 
(about ) because there is a lack of vacancies to produce a more rapid size increase. This 
shows that models for bubble evolution under annealing condition suggested in the past (see e.g. Ref. [3-
6]), which considered the process as an evolution of equilibrium bubbles only, are not valid in the case 
under consideration. Note that a similar situation is likely to be valid at all annealing temperatures up to 
900

/m x< >

1/5r t∼

1/8r t< >∼

oC since, as pointed out above, the total volume of bubbles after annealing in all cases is close to that 
introduced in the crystal during helium implantation. 
 
Note that the one-dimensional SDF, ( )f x , which is normally measured with TEM, can be easily 

calculated by using the two-dimensional SDF by summation over the parameter m, ( ) ( , )
m

f x f x=∑ m . 

An example of the one-dimensional SDF, which corresponds to the two-dimensional SDFs presented in 
Fig. 3, is presented in Fig. 4.  
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Fig. 4. One-dimensional size distribution function of gas bubbles, which corresponds to that presented on 

Fig. 3 calculated by summation over the parameter m, ( ) ( , )
m

f x f x=∑ m .  
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Cluster evolution during annealing at 700oC 
 
Calculations of the He-vacancy cluster evolution during annealing at 700oC have also been performed for 
different values of the cluster diffusivity.  The time evolution of SDF for D(0)=8.0*10-6 m2/s is presented in 
Figs. 5 for annealing times of 400 (a), 1600 (b) and 3600 (c) seconds. As can be seen from the plots, the 
evolution of bubbles exhibits the same trend as was found for an annealing temperature 600oC. The 
SDFs located in x,m – space follow a certain trajectory, which is the region where all clusters are over-
pressurized.  
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Fig. 5a. Size distribution function of gas bubbles at 700oC calculated under annealing for 400 sec with the 
pre-exponential factor equal to 8.0*10-6 m2/s. 
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Fig. 5b. Size distribution function of gas bubbles at 700oC calculated under annealing for 1600 sec with 
the pre-exponential factor equal to 8.0*10-6 m2/s. 
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Fig. 5c. Size distribution function of gas bubbles at 700oC calculated under annealing for 3600 sec with 
the pre-exponential factor equal to 8.0*10-6 m2/s. 
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The calculated results for number density and average size of clusters obtained with the different cluster 
nobilities are presented in Fig. 6 and 7. Similar to Fig. 1, the upper curves in Fig. 6 correspond to the total 
number of clusters, whereas the lower curves correspond to the density of visible clusters (r>0.5 nm).  As 
can be seen from the plots the calculated results obtained with the smallest value of cluster diffusivity, 
(D(0)=1.6*10-6m2/s), fit the experimental data for both the density of the clusters and their size. Thus, one 
can conclude that the calculated results obtained for D(0)=1.6*10-6m2/s agree reasonably well with the 
experimental observations in the temperature range of 600-7000C. The calculations of bubble evolution 
during annealing at temperatures 800 and 9000C are still in progress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Time dependence of the bubble density during annealing at 700oC as calculated with different 
values of the bubble diffusivity. 
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Fig. 7. Time dependence of the mean bubble radius during annealing at 700oC as calculated with 
different values of the bubble diffusivity. 
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Conclusions 
 
A grouping method for an approximate solution of two dimensional kinetic equations describing the 
evolution of point defect clusters has been developed that takes into account Brownian motion of the 
clusters. It can be used to describe gas-assisted nucleation of voids, bubbles or secondary phase 
precipitates. It may be shown that the method can be easily generalized for ME of higher dimensionality.  

 
The method was used to describe bubble evolution taking place during annealing in helium implanted (40 
appm) austenitic steel, were it was found that that Brownian motion of the clusters is the main mechanism 
driving He-vacancy cluster evolution during annealing in the case under consideration. Surface diffusion 
provides a mechanism for cluster mobility, which leads to reasonable agreement between the calculated 
results and experimental observations for bubble evolution, at least in a temperature range of 600-7000C. 
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