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“I remain dedicated to the concept of fusion power, as a citizen, and I
wish I was in a position to do more about it.” Ansel Adams, July 1983



One cup of water (D-D reaction) = 20 gallons of oil

Annual Fuel Requirements for a 700 Annual Fuel Requirements for a 700 MWMW ee Power Plant Power Plant



Partial List of Fusion ReactionsPartial List of Fusion Reactions

Tritium can be made from lithium (n + Li –> T + He)

• Neutrons produce radiation damage and bulk heating in
structure



Properties of Typical PlasmasProperties of Typical Plasmas

Density Temperature

Ne (m
-3) Te (eV) Kelvin

Interstellar 106 1 104

Solar Corona 1012 102 106

Fluorescent lamp 1018 10 105

Magnetic fusion 1020 104 108

Inertial fusion 1026 102 106

Air density 1025 0.025 293







Steady Progress has led toSteady Progress has led to
Achievement of Breakeven ConditionAchievement of Breakeven Condition
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ITER ITER (International Thermonuclear Experimental Reactor)(International Thermonuclear Experimental Reactor)

30 meters diameter by 30 meters tall



Fusion Energy R&D is at a CrossroadFusion Energy R&D is at a Crossroad

l Concept feasibility, proof of performance
have been demonstrated

l Pathway for most attractive commercial
power plant is uncertain
Ð Magnetic vs. inertial confinement

Ð Tokamak vs. spherical torus, stellarator, etc.

l Materials technology will play a major role
in determining the most viable path to
commercialization



Three Examples where MaterialsThree Examples where Materials
Impact the Fusion Reactor DesignImpact the Fusion Reactor Design

l Plasma facing (high heat flux)
components

l Plasma diagnostic, heating and
magnet systems

l First wall/blanket structural materials



Comparison of Heat FluxesComparison of Heat Fluxes
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Plasma facing (high heat flux) componentsPlasma facing (high heat flux) components

l Capital costs can be reduced by increasing the
fusion reactor power density

l Steady-state heat flux limit for structural materials is
~0.5 to 2 MW/m2 for 5 mm walls in a fusion reactor
Ð Capacity to withstand steady state heat fluxes of >35 MW/m2

has been demonstrated (He-cooled Cu divertor)

l Carbon/carbon composites do not appear to be
suitable for fusion reactors due to radiation induced
thermal conductivity degradation

l Plasma-facing liquid coolants can provide high
steady state heat flux removal capability (>2 MW/m2)
Ð Considerable technological challenges exist for application

to toroidal geometry (plasma shaping, coolant vaporization,
metal/coolant corrosion)



Key Factors for Plasma-Facing MaterialsKey Factors for Plasma-Facing Materials

l Be, C and W are the leading
plasma-facing candidates

• A tradeoff exists between the amount of erosion (N) and the
atomic number (Z) of the sputtered plasma-facing material

- Plasma power loss is proportional to NiZi
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l Neutron irradiation causes a large
decrease in C/C conductivity
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Recent Advances in CVD DiamondRecent Advances in CVD Diamond
Fabrication now allow High-power (~1 MW)Fabrication now allow High-power (~1 MW)

Gyrotrons Gyrotrons to be used for Plasma Heatingto be used for Plasma Heating
l CVD diamond production

costs have decreased rapidly
l High-quality CVD diamond (low RF

power absorption) is now available
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l Low power absorption is maintained in CVD diamond
after irradiation to moderate neutron doses (10-3 dpa)



Ionizing Radiation Causes Large PromptIonizing Radiation Causes Large Prompt
Changes in Electrical Conductivity of InsulatorsChanges in Electrical Conductivity of Insulators
l The electrical conductivity is

proportional to dose rate

• Suitable insulators are available for fusion reactor
applications

l No permanent degradation
occurs after neutron irradiation
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Structural Materials will Strongly ImpactStructural Materials will Strongly Impact
the Economics of Fusion Energythe Economics of Fusion Energy

l Key issues include thermal stress capacity,
coolant compatibility, safety, waste disposal,
and radiation damage effects

l The 3 leading candidates are ferritic/
martensitic steel, V alloys, and SiC/SiC
Ð Ti alloys have high hydrogen (tritium) solubility

and permeability, and low thermal stress capacity

Ð Ni base superalloys have poor radiation stability
(grain boundary embrittlement)

Ð Refractory alloys (Ta, Mo, W) must be operated at
very high temperature (>650ûC) to avoid radiation
embrittlement



Copper Alloys have High Thermal Stress CapacityCopper Alloys have High Thermal Stress Capacity
at Low Temperatures, but Poor Elevatedat Low Temperatures, but Poor Elevated

Temperature (>300ûC) Mechanical PropertiesTemperature (>300ûC) Mechanical Properties
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• Copper alloys are not attractive candidates for 1st wall/
blanket structural applications (low thermodynamic efficiency)



Recently Developed Isotropic OxideRecently Developed Isotropic Oxide
Dispersion Strengthened Steels OfferDispersion Strengthened Steels Offer
Potential for Improved PerformancePotential for Improved Performance

l Thermal creep temperature limit for martensitic Fe-8Cr
steel is ~550ûC (vs. >650ûC for ODS steel)
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V-4Cr-4Ti has an attractive combination ofV-4Cr-4Ti has an attractive combination of
strength, liquid metal compatibility, and highstrength, liquid metal compatibility, and high

temperature radiation resistancetemperature radiation resistance
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Radiation Damage can Produce LargeRadiation Damage can Produce Large
Changes in Structural MaterialsChanges in Structural Materials

l Radiation hardening and embrittlement (<0.4 TM)

l Irradiation creep (<0.45 TM)

l Volumetric swelling from void formation (0.3-0.6
TM)

l High temperature He embrittlement (>0.5 TM)

In addition...

l The irradiation environment associated with a
D-T fusion reactor is more severe than in fission
reactors
Ð Higher lifetime dose requirements for structure

Ð Higher He generation rates (promotes He
embrittlement of grain boundaries, void swelling)



Swelling resistant alloys have beenSwelling resistant alloys have been
developed via international collaborationsdeveloped via international collaborations

l Lowest swelling is observed in body-
centered cubic alloys (V alloys, ferritic steel)
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Irradiation Creep Dominates over ThermalIrradiation Creep Dominates over Thermal
Creep below 500ûC in Creep below 500ûC in AusteniticAustenitic Steel Steel
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Low Temperature Irradiation causesLow Temperature Irradiation causes
Hardening and Loss of Ductility in MetalsHardening and Loss of Ductility in Metals

l Matrix hardening produces an increase in the
ductile-to-brittle transition temperature in body-
centered-cubic alloys (ferritic steels, V alloys)
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SummarySummary
l Impressive physics advances have been

achieved from a relatively modest investment
Ð 1950-1995 fusion R&D funding ~5% of annual

gasoline expenditure by US consumers

l Several key questions still remain
Ð What is the optimal path for development of a

commercially viable power plant (magnetic vs.
inertial confinement, etc.)?

Ð Can fusion be cost-competitive with coal, fission?

l Materials will play a major role in determining
the fate of fusion energy
Ð Fusion energy economics may require new high

heat flux, radiation resistant materials


