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ABSTRACT

The recent availability of intense synchrotron sources with selectable x-ray energies

permits high-precision measurements of chemically specific atomic-pair correlations in

solid-solution alloys.  Short-range chemical order can be accurately measured to identify

one atom in a 100 for 10 or more shells even in alloys with elements nearby in the

periodic table, and chemically specific static displacements can be measured with 0.0001

nm resolution. This new information tests theoretical models of alloy phase stability and

structure and gives new insights into the physical properties of alloys.

INTRODUCTION

General Perspective

One of the great triumphs of materials science is the success of periodic electron

wavefunctions to describe the properties of crystalline materials. Yet increasingly

sophisticated calculations within the perfect periodic lattice approximation cannot

account for the influence of local correlations within real crystalline alloys or even

elemental crystals. For example, both thermal (dynamic) displacements and chemically

specific static displacements from the average lattice sites result in local strain which

influences the energetics of phase stability (1,2).  In fact, atomic size disparity between

the constituents of alloys has long been known to be a major factor controlling the ability

to form solid solutions as discussed by Hume-Rothery (3).  He included atomic size

differences with electronegativity (measure of an atoms ability to attract electrons) and

valence electron concentration in his empirical rules for the formulation of substitutions

solid solutions; >15% size difference results in limited solubility and L12 ordering is not

observed for size differences > 12%.  Though the influence of electronegativity and
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valence electron concentration are included within a perfect periodic array model, alloy

theorists have only recently turned their attention to atomic size (1,2,4-6).

Movements of the atoms off the sites of the average lattice because of thermal or

static displacements has long been of interest to x-ray crystallographers as discussed by

Kuhs (7).  In general, crystalline solid solution alloys have unit cell dimensions which are

nearly linear with concentration.  This is referred to as Vegard’s Law (8) and has been

generally assumed to imply that atomic volumes of the constituent elements are

independent of the alloy concentration.  As discussed here, recent research has shown this

not to be the case.

The influence of local correlations on alloy phase stability and properties is a

challenge not only to theory, but also to experiment. Diffuse x-ray scattering due to local

fluctuations is relatively weak in comparison to Bragg diffraction, and diffuse scattering

experiments are often count-rate limited and very time consuming. For alloys with

elements nearby in the periodic table, x-ray scattering contrast is too small for accurate

measurements of local order by traditional x-ray diffraction methods. Even when count-

rate and contrast are sufficient for precision measurements of local correlations,  local

chemical order and atomic size (static displacements) can be coupled in alloys by

geometrical factors and by chemical bonding effects. For example, in long-range ordered

alloys, tendencies to form different bond distances between unlike atom pairs can be

suppressed by the symmetry of the neighboring atoms. Hence in many cases, short-

ranged tendencies must be inferred from average lattice trends. In short-range ordered

alloys, measurements of local correlations are also complicated by the multitude of

possible local environments.  In a face-centered cubic, fcc, alloy where each atom has
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twelve nearest neighbors, there are 144 distinct chemical combinations in just the first

shell. Thus the influence of atomic size on phase stability and physical properties has

been traditionally very difficult to access except by rather indirect means.

Local correlations are not only important in terms of their energetic contribution to

phase stability, but also represent precursors to stable phases which may be difficult or

impossible to obtain experimentally because of slow kinetics (9, 10). For example, when

electronegativity between two elements exceeds a certain limit, there is a tendency to

form intermetallic phases at specific electron-to-atom ratios (3). This tendency may be

frustrated because the equilibrium ordering temperature is so low that slow diffusion

prevents ordering for years, decades, millennia or longer. Yet the tendency to locally

deviate from a random solid solution can indicate a stable lower temperature phase.

The presence of local chemical order can also have a major  effect on the physical and

chemical properties of alloys. Even though equilibrium phase diagrams exist for binary

metals, many of their properties are not known nor are they predictable from the

properties of their pure element constituents. The pure elements may be ductile, but their

intermetallic combinations can be very brittle as in the case for Al3Ti (11).

Effect of local order on alloy properties

Although the properties of pure elements are determined by nature, man has long

known that by mixing elements, we can create alloys with properties tailored to specific

needs. Although such alloying is critically important to materials science, often the

observed property changes remain unexplained, particularly for solid solutions where

there is a lack of information about local atomic arrangements. A review with a useful list
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of references on the effect of local structure on the properties of crystallographically

ordered compounds and solid solutions has been given by Cahn (12).  Electrical

resistivity, corrosion resistance, plasticity, strength, superconductivity, magnetic

properties, and diffusion are among the properties affected by the local order.

Solid solution strengthening is one example where local atomic size disparity and

local atomic arrangements between solute and solvent atoms play an important role.

Shown in Figure 1 is a strong correlation between the solute content and solid solution

hardening as discussed by Predmore, et al. (13).  The alloys Ta-Mo, Ta-W and Nb-Mo

have about a 5% difference in their atomic sizes and exhibit substitutional solid-solution

hardening.  Nb and Ta differ in size by less than 0.1% as measured from the lattice

parameters of the pure elements and show little solid solution strengthening (13).  In

addition, the local chemical orders can affect the strength of a solid solution where an

affinity for like neighbors (clustering) seems to have the larger strengthening effect as

discussed by Patu and Arsenault (14).  Measurements of the local atomic arrangements in

terms of the local chemical order and displacements from the sites of the average lattice

provide modeling information for calculations of property changes.

FIGURE 1

Figure 1.  Strengthening of crystalline solid solutions is strongly correlated with the

mismatch in atomic size (13).
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Comparison with alternative methods for the study of local correlations

Although the importance of chemical order and static displacements (size effect) on

phase stability and materials properties has long been acknowledged, direct

measurements of chemical order and particularly measurements of chemically specific

displacements in alloys are rare.  Present interpretation of local alloy structure is based

primarily on average lattice parameter measurements and first neighbor correlations. As a

result, models of local strain often do a good job of fitting observed average lattice

parameters, but disagree with recent experimental measurements of local strain.

Local chemical order and displacements can be studied experimentally with diffuse

neutron (17,18), electron (19)  and x-ray scattering(20,21,22), by Mössbauer

measurements (23), field ion microscopy (24), and by extended x-ray absorption fine

structure, EXAFS, measurements (25). Diffuse neutron scattering is an especially

powerful tool for the measurement of local chemical correlations but is restricted by

difficulties in obtaining large samples with the correct isotopic compositions and by

relatively weak neutron sources (18).  Electron diffuse scattering is limited by the

difficulty of measuring the intensity in absolute unit.  Diffraction measurements most

sensitive to the displacements are those where the scattering amplitudes of the constituent

atoms is large compared with their difference as discussed by Jiang (26).  Mössbauer

measurements can be sensitive to local environment, but they are difficult to interpret and

are limited to only a few isotopes.

EXAFS measurements are the most common method for determining chemically-

specific bond distances and first neighbor chemical correlations. This technique also

profits from the availability of intense and tunable synchrotron X radiation and has been
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applied to the study of near-neighbor distances in alloys. The most precise measurements

are done on very dilute alloys (< 2% solute) where the solute near-neighbor atoms are all

solvent atoms (25). For these measurements however only A-B type near-neighbor bond

distances can be recovered. EXAFS measurements on concentrated Au-Ni alloys were

used to recover the interatomic distances for the individual pairs as a function of

concentration.  The large 14% difference is size between Au and Ni atoms made this a

favorable case for EXAFS (27). In addition, with EXAFS, the reliability of the measured

bond distances falls off quickly with each shell. Thus in bcc, body-centered cubic, and

other alloys where 2nd or higher shell neighbor distances may be important, EXAFS

methods are inadequate. The uncertainty in the first neighbor bond distance for the best

EXAFS measurements is believed to be as low as ~0.001-0.002 nm. For many alloys,

however, this precision is inadequate to test theoretical models. In contrast, diffuse x-ray

scattering can measure bond distances to better than 0.0001nm in both random and

locally ordered or clustered systems.  However, whenever EXAFS measurements can be

made with  sufficient precision, the ease and simplicity of EXAFS experiments compared

with three dimensional diffuse scattering measurements makes EXAFS attractive.

Theoretical insights into local structure in crystalline alloys

Although a clear picture of the role of local disorder in crystalline alloys is still

emerging, theoretical models can give important insights into the mechanisms by which

local disorder affects phase stability and alloy properties.

PHENOMENOLOGICAL TREATMENT OF ATOMIC SIZE  The simplest model of

atomic size in solid solution alloys assumes that the average lattice constant of an alloy
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results from close packing of hard sphere atoms. With this assumption the average lattice

parameter is predicted to have a linear dependence on concentration: Vegard’s law (8),

rav = cArA + cBrB .     1.

Here the atomic radii rA  and rB  refer to the pure elements A and B at a concentration of

CA and CB respectively.  Deviations from the linear (Vegard’s law) dependence of lattice

parameter versus concentration are often associated with tendencies towards ordering

(unlike near-neighbors) or clustering (like near-neighbors). This observation can be

explained by a simple phenomenological extension of Vegard’s model where A-A and B-

B near-neighbor bond distances do not change from their pure element values on mixing.

If atomic volume is conserved, then the A-B distance is given by,

ABr = Ar + Br
2

.  2.

Any deviation of the lattice parameter from the linear relationshp with concentration is

assumed to be due to bonding (28).  If the A-B near-neighbor distance, 2rAB is less than

(rA +rB ) then there is an attraction between A-B pairs and a tendency to order. If,

however, 2rAB is greater than (rA+rB) then there is a repulsion between A-B pairs and a

tendency for like pairs to cluster. This model is usually but not always consistent with the

observed tendency for negative or positive deviations from Vegard’s law to predict

ordering or clustering respectively. With this phenomenological “distorted ball” model

the average near-neighbor distance for non-random alloys is given by Hartley (29) as

rav = cA
2rA + cB

2rB + 2cAcBrAB − cAcBα1 2rAB − rA − rB( ) . 3.



10

Here α1 is the nearest-neighbor Warren-Cowley (30) short-range-order parameter, which

depends on elemental concentration, CA, and the conditional probability, PAF, of finding

an A atom around a B atom (tendency to order or cluster).

α1 = 1− P1
AB / cA  . 4.

Although this model can often do a good job of fitting the observed average lattice

constant, recent resonant x-ray measurements find that the actual A-A, B-B and A-B

bond distances change with atomic concentration, Jiang et al (26).

CONTINUUM ELASTICITY APPROACH Further insight into the strain energy

introduced by atoms of varying size can be gained from a simple elastic model. This

model was first proposed by Friedel (31) and extended by Eshelby (32).  It assumes that

an oversized solute atom introduced into a vacant solvent host site exerts a pressure on

the surrounding atoms. This pressure distorts the host lattice and results in a back

pressure on the solute atom. With this model, the stress in the host lattice is found to be

pure shear (volume conserved as there is no change in the average lattice dimensions of

the host atoms), but the radius of the solute atom is modified from the stress-free value.

In addition, within this elastic model, differences in atomic size result in a positive term

to the free energy and to the enthalpy.  Because a positive enthalpy of mixing leads to a

miscibility gap, the conclusion is that large differences in atomic volume limit solubility,

in agreement with the rules of Hume-Rothery (3). This simple model, however, does not

account for local bonding effects which can dramatically alter atomic volumes for

specific local chemical environments.
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ISING MODEL Elasticity can also be included in an Ising model of pair displacements.

For example, Froyen & Herring (33) have included elasticity in a simple alloy model

with a first order treatment of size and atomic interactions. They find that within this

model, the predicted AB distance is always intermediate between AA and BB distances.

This apparently reasonable result actually is contrary to modern resonant measurements

which find AB distances less than AA or BB in short-ranged ordering alloys and AB

distances greater than AA or BB distances in clustering alloys. To address this inherent

limitation of the model, Chakraborty (4) has included a displacement dependence to the

Ising interaction. This expresses the fact that the interaction between different types of

atoms, whether attractive or repulsive depends on the distance between them.  With this

extension, the observed correlation between ordering and displacements is found to be a

natural feature of alloy structure. Although this Ising model can account for the observed

displacement behavior of ordering and clustering, systems, first principles models are

required to understand the mechanisms which lead to the distance dependence of the

atomic interactions.

FIRST-PRINCIPLES MODELS  In  addition to bulk first-principles methods for treating

atomic relaxations in alloys as discussed by Laks et al (34), it has proved useful to apply

first-principles atomic cluster models.  These accurately account for the charge

redistribution which is important to our understanding of the bonding preference as

discussed by Averill and Painter (35).  Analysis of cluster results identify the role of

local-chemical near-neighbors bonding and provide trends from which we can infer the

mechanisms for the local structural arrangements.

An example of cluster calculations on Fe-Ni solid solutions by Ice et al (36)

provides insight into the charge redistribution responsible for the interatomic distances
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between nearest neighbor pairs.  Bond distances between the Fe-Fe, Fe-Ni, and Ni-Ni

near-neighbor, NN, were calculated for a model consisting of fourteen atoms which

occupy the corner and face centered sites of a fcc unit cell with various concentrations of

Fe and Ni atoms (36).  An appreciable charge buildup occurred between Fe and Ni first

neighbor pairs with a corresponding decrease between Fe-Fe and Ni-Ni pairs.  This

charge redistribution can explain the observed large increase in lattice parameter with the

addition of Fe to Ni.  The formation of strong localized bonds between Fe-Ni NN allows

them to come closer together while the depletion of charge between the Ni-Ni pairs

increases their separation.  In addition to the charge decrease between Fe-Fe NN pairs,

ferromagnetic spin alignment also contributes to their larger distance as observed by

Jiang et al (26) from diffuse x-ray measurements.  These theoretical calculations (36) also

revealed that the Fe-Fe NN interatomic distance was not sensitive to the presence of Ni in

the lattice.  This agrees with experimental observations shown in Figure 2.  These data

taken from the work of Jiang et al (26) show that the average Fe-Fe NN distances are

much larger than for the average lattice which is attributed to the large ferromagnetic

coupling between the Fe-Fe NNpairs.  This magnetic coupling aligns the unpaired

electron spins which pushes the Fe pairs apart since these paired electrons avoid

occupying the same space according to Pauli’s exclusion principle.  Part of the larger Fe-

Fe first neighbor distance arises because the Fe atom is larger than the Ni atom.  Several

estimations are given for the spacings between Fe-Fe NN at room temperature if fcc Fe

were to exist.  These estimates are obtained from the Goldschmidt (37) ratio of 1.03 times

the bcc lattice, the volume change associated with the α-γ transformation at 912°C and

applied at room temperature, and an extrapolation of the fcc lattice parameters for

antiferromagnetic, Fe-Mn alloys at room temperature to pure Fe (38,39a).  We estimate

that from 1/3 to 1/2 the lattice expansion caused by the addition of Fe to Ni arises from
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the magnetic interaction.  More indepth discussion is given in Jiang et al (26).  New

insight to phase stability will come about with the symbiotic interaction between

experiment and theory so that we can test and refine our understanding of local

structures.

Figure 2.  Average interatomic distances between nearest nighbor pairs relative to the

average from lattice parameters measurements for two Fe-Ni alloys containing 46.5 and

22.5 at. % Fe as given by Jiang et al (26).  The very large interatomic distance between

Fe-Fe nearest neighbors is from both magnetic spin alignment and charge redistribution

as discussed in the text.  The nonmagnetic contribution to the lattice expansion estimated

in three different ways are indicated by left pointing arrows.

BRIEF REVIEW OF DIFFUSE DIFFRACTION THEORY AND EXPERIMENT

X-ray averages

The variables recovered from measurements of diffuse x-ray scattering from binary

substitutional alloys provide the pair correlation probabilities of finding chemically

specific atom pairs (e.g. Fe-Ni or A-B) and their average interatomic distances. Since a

mm-diam x-ray beam intercepts ~1020  atoms, the average A-B probabilities and

interatomic distance is the mean for ~1021 pairs of atoms since each atom has typically

eight to 12 first neighbors. This information can be recovered for many shells with high

precision.  Because diffuse x-ray scattering intensities normally do not include phase

information, only pair correlation information can be recovered. With coherent x-ray

sources it may be possible in the future to image small atom clusters to recover three

body and higher order correlations. At present however the most detailed information
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about local atomic structure comes from resonant x-ray scattering with extremely intense

but incoherent x-ray beams from synchrotrons. Below we review briefly the basic

diffraction theory of scattering from locally disordered alloys.

Basic Diffraction Theory

For an ensemble of atoms with complex x-ray atomic scattering factors fp at the site p

and the complex-conjugate fq* at the site q, the elastically scattered x-ray intensity is

given by,

  
I (

r 
H )TOTAL = pf exp 2π i

r 
H •

r 
r p( )p∑

2
=

p
Σ

q
Σ pf q

*f exp 2πi
r 
H •(

r 
r p −

r 
r q )[ ]. 5.

The sums over the lattice sites run from  0 to N-1 for N atoms, where   
r 
r p and   

r 
r q are the

atomic position vectors for those sites, and   
r 
H  is the momentum transfer or reciprocal

lattice vector |  
r 
H | = (2 sin θ)/λ, as shown in Figure 3.  For crystalline solid solutions with

a well-defined average lattice (sharp Bragg reflections) the atom positions can be

represented by   
r 
r =  

r 
R +  

r 
δ  where   

r 
R  is determined from the lattice constants measured

from positions of the Bragg reflections.   
r 
δ  is the displacement both thermal and static of

the atom from that average lattice.  Equation (5) can be separated into terms of the

average lattice   
r 
R and the local fluctuations  

r 
δ ,

  
TOTALI(

r 
H ) =

p
Σ

q
Σ pf q

*f exp 2πi
r 
H •

r 
δ p −

r 
δ q( )[ ]exp 2πi

r 
H •

r 
R p −

r 
R q( )[ ].    6.

Figure 3. A cubic structure is used to illustrate the notation for the atom positions in a real

space lattice with unit cell dimensions of   
r 
a =

r 
b =

r 
c .  The corresponding reciprocal space

lattice is   
*r a , *r 

b , *r c .   The position in reciprocal space h1h2h3 at which the scattered

intensity,  I(
r 
H ) , is measured for an incoming x-ray in the direction of   

r 
S 0  of wavelength λ
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and detected in the outgoing direction of   
v 
S  is 

  1

r 
H =

r 
S −

r 
S 0( ) / λ = h

r 
a * + 2h

r 
b * + 3h

r 
c * .   At

Bragg reflections h1h2h3 are integers and are usually designated   hkl, the Miller indices of

the reflection.  This notation follows that used in the International Tables for

Crystallography.

Our discussion of the diffraction theory is limited to crystalline binary alloys of A and

B atoms with atomic concentration CA and CB respectively. The sums over all the atoms

are a statistical description which includes all possible atom pairs that can be formed, i.e.,

A-A, A-B, B-A, B-B as described by Warren (20).  A preference for like or unlike

neighboring pairs is introduced by the conditional probability term pq
ABP  defined as the

probability for finding a B atom at site q after having found an A atom at site p as given

by Cowley, (30).  The probability for A-B pairs is CA pq
ABP  which must equal CB pq

BAP  the

number of B-A pairs.  Also, pq
BBP =1- pq

BAP , pq
AAP =1- pq

ABP  and CA+CB=1. We include all

possible pairs and write the average value as ,

  

fp fp
* exp 2πi

r 
H •

r 
δ p −

r 
δ q( )[ ] = CAPpq

AA fA fA
* exp 2πi

r 
H •

r 
δ p

A −
r 
δ q

A( )[ ]
+CAPpq

BA fA fB
* exp 2πi

r 
H •

r 
δ p

B −
r 
δ q

A( )[ ] + CBPpq
AB fA fA

* exp 2πi
r 
H •

r 
δ p

A −
r 
δ q

B( )[ ]
+CBPpq

BB fB fB
* exp 2πi

r 
H •

r 
δ p

B −
r 

δ q
B( )[ ]   .

7.

Spatial and time averages are indicated for the chemically distinct A-A, A-B or B-B pairs

with relative atom positions p-q. The Warren-Cowley short-range-order parameter is

defined by Cowley (30) as pqα ≡ 1 − pq
ABP / BC  (Equation 4). With the substitution of

Eq. (7) into Eq. (6), the total elastically and quasi-elastic (thermal) scattered intensity in

electron units for a crystalline solid solution of two components is given as,
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I(
r 

H )TOTAL = CA
2 + CACBαpq( ) fA

2
exp2πi

r 
H •

r 
δ p −

r 
δ q( ) AA 

  
q
∑

p
∑

+CACB(1− α pq) fA fB
* exp2πi

r 
H •

r 
δ p −

r 
δ q( ) BA

+ e x p 2πi
r 

H •
r 
δ p −

r 
δ q( ) AB 

 
 
 

+ CB
2 + CACBα pq( ) fB

2
exp2πi

r 
H •

r 
δ p −

r 
δ q( ) BB 

  e x p 2πi
r 
H •

r 
R p −

r 
R q( ),

  8.

where |fA| and |fB| denote the absolute value or moduli of the complex amplitudes.

The spatial and time average of the jth order Taylor series expansion of the exponential

displacement term is

  
e x p 2πi

r 
H • p

r 
δ − q

r 
δ 

 
 

 
 ≡ exp iXpq =1 + i pqX −

X pq
2

2
−

i Xpq
3

3!
+ • •• +

ji Xpq
j

j!
.9.

Our interest is in the diffusely distributed intensity associated with the short-ranged

correlations. We remove the long-ranged correlations which give rise to the sharply

peaked (Bragg) reflections. With the definition <Xpq>=<Xp-Xq> so that <(Xp-Xq)
2> =

p
2X + q

2X − 2 pX qX , and for sharply peaked Bragg reflections where  p-q→∞ the

displacements become uncorrelated so that  pX qX = 0 . Therefore,

pq
2X p− q→∞

= p
2X + q

2X ,  and with the harmonic approximation which relates the

higher moment terms to the second moment, we can write the sharply peaked

intensity,  I(
r 
H ) Fund  as

  
FUND

I
r 
H ( ) = AC Af −MAe + BC Bf −MBe

2
exp2πi

r 
H •

r 
R p −

r 
R q( )

q
∑

p
∑ .               10.

Here MA and MB are the usual designation for the Debye-Waller factors  including both

dynamic and static displacements. This expression accounts for the reduced intensity of

the fundamental Bragg reflections due to thermal motion and static displacements of the
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atoms.  Fundamental reflections scale as the average scattering factor and are insensitive

to how the chemical composition is distributed on the lattice sites.  When the alloy has

long-range order among the kinds of atoms, the αpq’s do not converge rapidly with larger

p,q and  account for the superstructure Bragg reflections that depend on how the atoms

are distributed among the sites. To recover the diffuse intensity, we subtract 
  
I

r 
H ( )FUND

from 
  
I

r 
H ( )TOTAL

 Eq. (8) without making the harmonic approximation used in Eq. (10).

To second order in the Taylor series expansion of the static and thermal displacements,

we have that,

  

I(
r 

H )DIFFUSE =  CA
2 + CACBα pq( ){

q
∑

p
∑ fA

2
1+ i Xp

A − Xq
A −

1

2
Xp

A − Xq
A( )2 

 
 
 

−CA
2 fA

2
1− X2 A 

 
 
 + CACB 1 −α pq( ) fA fB

* 1 + i Xp
B − Xq

A −
1

2
X p

B − Xq
A( )2 

 
 
 

−2CACB fA fB
* 1−

1

2
X2 A

−
1

2
X2 B 

 
 
 

+CACB 1 −α pq( ) fA fB
* 1+ i Xp

A − Xq
B −

1

2
Xp

A − Xq
B( )2 

 
 
 

+ CB
2 + CACBαpq( ) fB

2 1 + i Xp
B − Xq

B − 1
2

Xp
B − Xq

B( )2 
 

 
 

−CB
2 fB

2 1 − X 2 B 
 

 
 
 
 
 

e x p 2πi
r 
H •

r 
R p −

r 
R q( )[ ].

11.

For an alloy which is on average statistically cubic such as that shown in Figure 3, we

define

  

r 
R p −

r 
R q ≡

r 
R 0 −

r 
R lmn =

l

2

r 
a +

m

2

r 
b +

n

2

r 
c   ;   

r 
H ≡ h1

r 
a * +h2

r 
b * +h3

r 
c *, 12.

so that

  
2π

r 
H •

r 
R 0 −

r 
R lmn( ) = π 1h l + 2h m + 3h n( ). 13.

In addition,
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  lmn
r 
δ ≡ lmn∆X

r 
a + lmn∆Y

r 
b + lmn∆Z

r 
c , 14.

so that

  0X − lmnX ≡ 2π
r 
H •

r 
δ 0 −

r 
δ lmn( ) ≡ 2π 1h[ 0∆X − lmn∆X( )

2+ h 0∆Y − lmn∆Y( ) 3+h 0∆Z − lmn∆Z( )]. 15.

 This definition of   
r 
R o −

r 
R lmn  causes the continuous variables h1h2h3 in reciprocal space

to have the integer values of the Miller indices at reciprocal lattice points.  We further

specify that the site symmetry is cubic such as for the bcc Fe structure and fcc Cu

structure.  With these definitions the various diffuse x-ray scattering terms through the

second moment contained in Eq. (11) can be written, starting with the local chemical

order term as,

  

I(
r 
H )Diffuse

N
=

I(
r 
H )SRO

N
+

I(
r 
H ) j=1

N
+

I(
r 
H ) j=2

N 16a.

where

  

I(
r 
H )SRO

N
= CACB fA − fB

lmn
∑ 2α lmn cosπ h1l + h2m + h3n( )    , 16b.

which describes the diffuse scattering arising from local chemical order among the atoms

as first given by Cowley (30),

  

I
r 
H ( ) j=1

N
= − Re fA fA

* − fB
*( )( ) h1Qx

AA + h2Qy
AA + h3Qz

AA[ ]
    + Re fB fA

* − fB
*( )( ) h1Qx

BB + h2Qy
BB + h3Qz

BB[ ]    ,

16c.

This first moment of the static displacements is the term with which we are most

concerned when recovering interatomic distances. The second moment of the

displacements is written as,
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I(
r 

H ) j=2

N
= fA

2 h1
2RX

AA + h2
2 RY

AA + h3
2RZ

AA( )
+ fA fB

* h1
2RX

AB + h2
2RY

AB + h3
2RZ

AB( ) + fB
2

h1
2RX

BB + h2
2RY

BB + h3
2RZ

BB( )
+ fA

2 h1h2SXY
AA + h1h3SXZ

AA + h2h3SYZ
AA( ) + fA fB

* h1h2SXY
AB + h1h3SXZ

AB(
+h2h3SYZ

AB) + fB
2

h1h2SXY
BB + h1h3SXZ

BB + h2h3SYZ
BB( ),

 16d.

which describes the diffuse intensity distribution associated with the second moment of

the displacements (both static and thermal). The terms contained in Eq. 16c are given by,

QX
AA = 2π CA

2 + CACBα lmn( ) ∆Xlmn
A

lmn
∑

0

A
sinπh1l cosπh2m cosπh3n

and

QX
BB = 2π CB

2 + CACBαlmn( ) ∆X lmn
B

lmn
∑

0

B
sinπh1l cosπh2m cosπh3n  ,

and similarly for the y and z terms as first given by Warren et al (40) and later by Borie &

Sparks (41) without their earlier assumption of radial displacements.  The displacement

terms are written as ∆Xlmn
A

0

A
= ∆X0

A − ∆Xlmn
A , and schematically shown in Figure 4.

Figure 4.  Rectangular cube of solid lines is the average lattice about which the atom

centers + are displaced by the amount 
  pq

r 
δ .   Shown in the small box on the right are the

rectangular components of the displacement, ∆Χ, ∆Υ, and ∆Ζ.

Equations (16b,c,d) are derived from the terms first given by Borie & Sparks (42),

but with notation similar to that used by Georgopoulos & Cohen (43). There are twenty-

five Fourier series in Eqs. (16b-16d).  For a cubic system with centrosymmetric sites if

we know QX
AA  , then we know QY

AA  and QZ
AA . Similarly if we know QX

BB , RX
AA , RX

BB ,
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RX
AB , SXY

AA , SXY
BB , and SXY

AB  then we know all the Q’s, R’s and S’s. Thus with the

addition of the α series, there are nine independent Fourier series for cubic diffuse

scattering to second order.

From the definition of an average lattice, the weighted average of the

displacements for all the kinds of pairs formed for any coordination shell was shown by

Warren et al (40) to be zero.  Thus

  
2 α pq − 1( )

r 
δ p

A −
r 
δ q

B =
CA

CB
+α pq

 
 
  

 
 

r 
δ p

A −
r 
δ q

A +
CB

CA
+α pq

 
 
  

 
 

r 
δ p

B −
r 
δ q

B . 17.

If a crystal structure has more than one kind of sublattice with different site symmetries,

then Eq. (17) may be true for only that sublattice with all the same site symmetries. This

conservation of volume is why there are but two of the three possible pair terms in Eq.

(16c). Details of the individual terms of Eq. (16d) are given by Borie & Sparks (42) and

Georgopoulos & Cohen (43).  As it is difficult to separate second-moment static from

second-moment thermal displacements, we will address attempts for their separation

from the diffraction pattern so that we can recover   I(
r 
H ) SRO  and   I(

r 
H ) j=1.
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Recovery of local order and displacement parameters

BORIE-SPARKS METHOD As illustrated above in Eq. (16b), local chemical order

(Warren-Cowley α’s) can be recovered from a crystalline binary alloy with a single

measurement of the diffuse scattering distribution provided fA –fB≠ 0, and the

displacement contributions are negligible. This was the early practice until a series of

papers used the symmetry relationships among the various terms to isolate their

contributions to the diffuse x-ray scattering. First, Borie & Sparks (41) showed how

symmetry could be used to remove the I(  
r 
H )j=1 term in two dimensions. Sparks & Borie

(44) extended the technique to three dimensions then Borie and Sparks (42), henceforth

referred to as BS, developed a separation of the diffuse scattering through the second

moment into all three components in three dimensions: I(  
r 
H )SRO, I(  

r 
H )j=1,I(  

r 
H )j=2. The

major assumption of the BS method is that the x-ray atomic scattering factor terms

fA − fB
2

, Re( fA( fA
* − fB

* ) , Re( fB( fA
* − fB

*) , fA
2

, fB
2

, and fA fB
*   of Eq. (16) have

a similar   
r 
H  dependence so that a single divisor renders them independent of   

r 
H .

The periodicity of the terms of Eqs. (16b-d) and the assumption that the scattering factor

terms can be made independent of   
r 
H  permits us to write them as a sum of periodic

functions;

  

   I
r 
H ( )DIFFUSE

N f
r 

H ( )2 = A 1h 2h 3h( ) + 1h B 1h 2h 3h( ) + 2h B 2h 3h 1h( )

3+ h B 3h 1h 2h( ) + 1
2h C 1h 2h 3h( ) + 2

2h C 2h 3h 1h( ) + 3
2h C 3h 1h 2h( )

+ 1h 2h D 1h 2h 3h( ) + 1h 3h D 2h 3h 1h( ) + 2h 3h D 3h 1h 2h( ),
18.
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where A(h1,h2,h3) is given by Eq. (16b) ÷ 
  
f

r 
H ( )2 , and B 1h 2h 3h( )  contains the two terms

− fA∆f *QX
AA + fB∆f *QX

BB  given by Eq. (16c) ÷ 
  
f

r 
H ( )2  and likewise for the other terms.

For neutron nuclear scattering, the assumption that the scattering cross sections are

independent of   
r 
H  is valid.  In addition, thermal scattering of neutrons results in a

sufficient shift in energy that the phonon contribution to terms C and D of Eq. (18) can be

filtered out.  A neutron scattering experiment by Müller et al (17) on Al+1.7 at. % Cu

single crystals was used to study the structure of Guinier-Preston zones.  Two different

isotopes were used to separate the A-A and B-B displacements in the j=1 term.  This

technique removes the large thermal diffuse scattering contribution and for small

displacements, where the second moment is negligible, is an excellent method.  The

major uncertainties are the ability to produce two single crystals identical in every way

except for the kind of isotope, and restrictions from limited data and statistics because of

low flux levels of neutron sources.  The BS procedure has been applied for example to

studies of compositions between 9 and 13 at. % Al in Cu by Epperson  et al (45). Shown

in Figure 5 are the x-ray atomic scattering factor terms which appear in Eq. (16) for the

composition Al14Cu86 with a lattice parameter of a=3.654 Å.  Data in   
r 
H  space coordinates

typically includes 
  
r 

H = 1 to 4 which is sufficient for the BS separation through the second

moment of the displacements.  The minimum volume of data has been described by

Gragg et al (46).  With a proper choice of the divisor, the   
r 
H  dependence of the scattering

factor terms can be minimized.  We chose f 2 for the divisor in Figure 5.  Various

divisors could be chosen which would cause the curves in Figure 5 to have various slopes

and in this way bracket the values of the recovered α‘s and displacement parameters.

This would allow an estimate of the errors associated with the assumption of linearity for
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the various scattering factor terms contained in Eq. (16) and plotted in Figure 5.  Since

the terms X
AAQ  and X

BBQ  have the same symmetry and   
r 
H  dependence, the BS method

does not allow for their separation with one measurement of the diffuse scattering.

Figure 5.  Variation of the x-ray atomic scattering factor terms divided by 〈ƒ〉2 as a

function of the magnitude of the momentum transfer |H|.   Division by  other terms could

be used to reduce and/or change their |H| dependence.

GEORGOPOULOS-COHEN METHOD To overcome this limitation, Georgopoulos and

Cohen (3), following a suggestion by Tibballs (47), used the difference in the variation of

the x-ray scattering factors with   
r 
H  to separate the A-A and B-B pair displacements.  This

procedure by Georgopoulos and Cohen (43), henceforth GC, was widely applied.

Though in principle the GC method used the symmetries of the BS separation, the GC

method recovered the Fourier coefficients α‘s, Q’s, R’s, and S’s of Eq. (16b,c) in a large

least squares program.  A Householder transformation was used to avoid matrix inversion

with ridge-regression techniques for stabilization.  This still resulted in unacceptable

large errors for the individual A-A, A-B, and B-B values of the R’s and S’s as discussed

by Wu et al (48).  However, the symmetry of the various terms was preserved, and their

separation allowed for the recovery of the α‘s  with report uncertainties of 10% or less of

their value (48).  Smallest uncertainties occur when there is a preference for unlike first

neighbors which places the diffuse maxima in the scattering away from the intense Bragg

peaks.  When there is a preference for clustering (like nearest neighbors), errors increase

(Gragg 46). Wu et al (48) reports smaller uncertainties with the GC method compared

with the BS method for clustering systems.  Experience and more systematically correct
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data from intense synchrotron sources will permit further reduction in the measurement

uncertainties.

MODERN RESONANT METHODS When the difference in the atomic numbers of the

constituent elements is small such as for Fe-Ni, the Laue scattering term proportional to

Fef Ni− f
2

 is small.  This is the basis for a methodology by Ice et al (49) to recover the

pair correlation parameters with selectable x-ray energies.  Of most practical interest are

the α‘s and the first moment of the static displacements as given in Eqs. (16b,c,d).  The

scattering factor term Af − Bf   can be made to be nearly zero by proper choice of x-ray

energy nearby to an x-ray absorption edge.  In this way, the intensities expressed in Eqs.

(16b-c) are made nearly zero, and only that intensity associated with Eq. (16d) remains.

Thus, the term 
  
I

r 
H ( ) j=2

 can be measured without the terms of equations (16b-c), then

scaled to diffuse scattering measurements made at other x-ray energies (which emphasize

the contrast between the A and B atoms) and subtracted off.  This leaves only the

  
I

r 
H ( )SRO

  term  Eq. (16b) and the first moment of the static displacements 
  
I

r 
H ( ) j=1

,

Eq. (16c).  Recovery of these individual static displacements for the A-A and B-B pairs

requires that the ratio Re fA(fA-fB)*/ Re fB(fA-fB)* be changed by an appropriate choice of

x-ray energies, as shown in Figure 6. The variation or contrast obtained by changing the

x-ray energy especially near the Fe K and Ni K absorption edges shown in Figure 6a is

much larger than obtained by changing the scattering angle or momentum transfer as

shown in Figure 6b.  Near the Ni K edge one can actually reverse the ratio (contrast) as

shown in Figure 6a, which produces notable changes in the diffraction pattern as shown

in Figure 7. This sensitivity of the diffuse scattering to changes in the x-ray atomic
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scattering factor of one or more of the constituent atoms permits the separation and

recovery of the A-A and B-B pair contributions as originally proposed by Ramesh and

Rameseshan (50) and implemented by Ice et al (49).

Figure 6.  (a) Separation of the contribution of the two kinds of pairs A-A and B-B to the

diffuse scattering depends on how large a difference can be affected by changing x-ray

energy near absorption edges.  (b) Reliance on the much smaller change in ratio obtained

by changes in scattering angle does not produce as robust a solution.

FIGURE 7

Figure 7.  The change in the diffuse intensity at the Fe K edge O and Ni K edge permits

the separation of the Fe-Fe and Ni-Ni pair displacements.  The near null Laue energy of

8000 eV allows removal of thermal diffuse scattering from the data taken at the other two

energies.

The major assumption in this null Laue or 3λ method (49) is that the 
  
I

r 
H ( ) j≥2

 which

includes the higher moment terms scale with x-ray energy as AC Af + BC Bf
2

.  This

implies that the A and B atoms have the same second and higher moment displacements

or that the different elements have the same x-ray atomic scattering factors.  This

assumption is most valid for alloys of elements with similar atomic numbers which have

similar masses (similar thermal motion), similar atom sizes (small static displacement),

and similar numbers of electrons (similar x-ray scattering factors).  This 3λ method has
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been used to analyze four different alloys, Fe22.5Ni77.5 (40) Cr47Fe53 (51), Cr20Ni80 (52), and

Fe46.5Ni53.5 and recalculated Fe22.5Ni77.5 (26).  An improvement in the null-Laue method by

Jiang et al (26) removed the iteration procedure to account for the residuals left by the

fact that fA-fB  was not strictly zero over the measured volume.

Estimation of the statistical and systematic errors of this null Laue method has been

given by Jiang el al (26) and by Ice et al (22).  The statistical uncertainties of the

recovered parameters can be estimated by propagating the standard deviation ± n  of the

total number of counts n for each data point through the non-linear least squares

processing of the data.  Systematic errors can be determined by changing the values of

input variables such as the x-ray atomic scattering factors, backgrounds, and composition.

The data is then reprocessed and the recovered parameters compared.

Since the procedure calls for the subtraction of the large thermal scattering

contribution represented by the 8000 eV data of Figure 7, the measured pair correlation

coefficients are very sensitive to the relative and to a lesser degree the absolute intensity

calibration of the data sets.  The addition of constraints on the intensity calibrations of the

three (or more) energy data sets,  greatly increases reliability and reduces uncertainties.

Scaling factors of the measured scattering intensities are varied as input parameters. The

intensities are adjusted until α000=1, and the ISRO values are everywhere positive and

match values at the origin of reciprocal space measured by small-angle scattering.  These

constraints eliminate most of the systematic errors associated with converting the raw

intensities into absolute units as discussed by Sparks et al., (53).  The intensities

measured at three different energies are adjusted to within ~1% on a relative scale and the

intensity at the origin is matched to measured values.  With adequate statistics, the

systematic errors for α000 are estimated at ~1%.  Estimated uncertainties on the other α‘s

are less than 1%, and the first moment of the displacements can be recovered to ± 0.003
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Å or less for the first five shells, as discussed by Jiang (26).  Experimental details have

been given by Ice et al (54).

The use of resonant scattering to separate the A-A and B-B local correlations has

proven to be a robust method which unambiguously identifies the atom pairs which have

the larger and smaller displacements.  Butler and Cohen (55) in earlier work used the GC

method of analysis to recover the static displacements from a single x-ray wavelength

measurement of disordered AuCu3 and concluded that the Au-Au pair first neighbor

distance was shorter than that for Cu-Cu.  This result is puzzling in light of the

experimental observation that ordering of AuCu3 reduces the lattice constant (more first

neighbor Au-Cu pairs are formed at the expense of Cu-Cu and Au-Au pairs) and the

experimental finding that the addition of the ~14% larger Au atoms to Cu increases the

lattice constant.  The dilation of the lattice constant is evidence that either the Au-Au

bond and/or the Au-Cu bond distance is larger than that of Cu-Cu.  EXAFS

measurements also show that Au-Au first neighbor distances are the largest of the three

pairs for all Au-Cu alloys (56).  Theoretical considerations by Charkraborty  (4);

Horiuchi et al.(57) and Ozolins et al (58) have all concluded that the Au-Au bond

distance is the largest of the three kinds.  Apparently, the   
r 
H  variation of

Auf ∆f *and Cuf ∆f * is not adequately different to provide for a meaningful separation of

the Au-Au and Cu-Cu bond distances with the GC method.  In a direct comparison with

the 3λ technique by Schönfeld el al (52) on an alloy of Ni80Cr20, the GC result gave a Cr-

Cr bond distance which was smaller than the average lattice, an opposite conclusion to

the 3λ result.  Since the addition of Cr to Ni increases the lattice parameter, there is

reason to suspect that Cr is the larger atom and that Cr-Cr NN distances should be larger

than the average lattice.  This was the result given by the 3λ method (52).  A full
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accounting of the possible errors introduced by the assumption of similar second and

higher order moments of the displacements for the different atom constituents for the 3λ

method has not been made.  Surely the assumption would become less valid for atoms

with increasing different masses like Au and Cu. However, there is also a concern about

calculating the thermal diffuse scattering from the force constants and subtracting it off.

The Born-Von Karman  approach as discussed by Warren (20) assumes that Au and Cu

have similar thermal amplitudes. Iterative techniques which force known symmetries on

the measured diffuse scattering are being considered by the present authors as a way to

remove any assumptions in recovering the parameters which describe the local structure.

OBSERVATIONS OF LOCAL ATOMIC ARRANGEMENTS

Chemical order

There have been but few diffuse scattering studies where anomalous x-ray scattering

(or isotopic substitution with neutrons) has been used to recover local order and atomic

displacements. The earliest reported work was a recovery of the local order among atoms

in ternary solid solutions. For a ternary alloy of A, B and C type atoms, there are three

independent pair probabilities: A-B, A-C and B-C . These pair probabilities are related

such that PAA=1-PAB-PAC. A neutron study of the local atomic chemical order in a

Cr21Fe56Ni23 stainless steel separated the three pair probabilities by using three isotopically

different compositions as reported by Cenedese et al (59). Thermal contributions were

filtered out by the energy shift and static displacements through first order, Ij=1, were

removed by the BS symmetry arguments. Magnetic scattering was considered to be

insignificant. An analysis of the results showed that the individual pair probabilities were

significant and known to about ±0.01 with even smaller uncertainties for the Fe-Ni pairs.

Shown in Figure 8 in the left-hand column is a plot of the Warren-Cowley short-range
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order parameters recovered for the Cr21Fe56Ni23 (59) ternary alloy.  Under the reasonable

assumption that the second order  and higher moments of the static displacements are

small.  For comparison the α‘s recovered from binary alloys (51, 52, and Robertson JL

et al submitted) are plotted in the right-hand.  Though the binary concentrations are not in

the same ratio as those for the ternary, this comparison , nevertheless, provides an insight

into how the addition of a third element can affect the probability for specific pair

formation. The preference for Fe-Ni near-neighbor pairs in the binary alloy (from

Robertson JL et al submitted) is reduced by the addition of Cr. Chromium seems to have

a greater affinity for Ni nearest neighbors than does Fe, thus Cr replaces the Fe-Ni NN

pairs with Ni-Cr NN pairs. Though the bcc binary Fe53Cr47 has a miscibility gap and was

shown to have a preferene for Fe-Fe as NN (51), in the fcc stainless steel alloy this

tendency for phase separation has been replaced with a nearly equal affinity to form

either Fe-Cr NN or Fe-Fe NN pairs.

Figure 8.  The Warren-Cowley short-range order parameters αlmn
AB  in the left-hand

column for a ternary alloy Fe56Cr21Ni23 obtained by Cenedese et al (59) is compared with

those from binary alloys in the right-hand column (51,52, Robertson JL et al submitted).

The bonding preference of an atom pair can be affected by the addition of a third

element.

A Cu47Ni29Zn24 ternary alloy is a case in which resonant diffuse scattering at three x-

ray energies provided the contrast to measure the three independent chemical pair

correlations. This study with tunable synchrotron radiation by Hashimoto et al (60)
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assumed that the static displacements were small and recovered the α‘s for Ni-Zn, Cu-Zn

and Cu-Ni pairs out to four shells. They found that Zn had a preference for unlike NN of

Cu and Ni while Cu-Ni pairs preferred not to be NN. From a study of the binary phase

diagrams, we find that there is a tendency for Ni-Zn and Cu-Zn to bond and form

compounds, whereas  Cu-Ni has a tendency to phase separate. Thus the presence of a

third constituent in this case does not seem to qualitatively alter the bonding preference of

the remaining pairs.  This seems reasonable if there is no strong preference for forming

one kind of near neighbor bond over another.  Information of the kind illustrated above,

will provide important tests for theoretical modeling of phase stability. We can now

measure local chemical preferences among atomic neighbors which would be very

difficult if not impossible to measure by any other means.

Local atomic displacements and chemical order

An early neutron scattering experiment in one dimension by Müller et al (17) on two

isotopically different single crystals of Al98.5Cu1.75 recovered the displacements

perpendicular to the Cu rich {100} planes of atoms known as Guinier-Preston zones.  A

planer model was used to interpret the results.  The large displacement of the Al atoms

towards the smaller Cu rich planes was sufficient to make a significant contribution to the

measured intensity especially for |H|≥2.  These measurements have added valuable

information to the understanding of the local displacements in the early stages of

precipitation.

In the series of papers in which the 3λ or null Laue method Ice et al (50) was applied

to the study of Fe22.5Ni77.5, Fe53Cr47 by Reinhard et al (51), Ni80Cr20 by Schonfeld et al

(52), and then on Fe46.5Ni53.5 by Jiang et al (26), both the local order coefficients and the

atomic displacements were recovered for the individual pairs.  Most recently the



31

composition Fe63.2Ni36.8 has been studied with the 3λ x-ray method by JL. Robertson et al

submitted.  Information on local chemical order for Ni80Cr20 and Fe53Cr49 was shown in

Figure 8.  Recovered displacements are shown schematially in Figure 9.  Both the Fe-Ni

and Cr-Ni alloys show a preference for unlike nearest neighbors pairs and have the

smallest average separation.  A clustering alloy such as Cr-Fe with a preference for like

nearest neighbors have the unlike nearest neighbors furtherest apart as shown in Figure

9c.  Other than the earlier mentioned cluster calculation on Fe-Ni compositions which

gave qualitative insight into the interatomic distances with charge redistribution between

the atom pairs (36), most theoretical effort has avoided the magnetic transition metals.

Figure 9.  Schematic representation of the average first neighbor displacements of the

three kinds of pairs from the average lattice by a square of solid lines.  The atom centers

+ are on average closest for those pairs with a preference as nearest neighbors.  Data from

references 26,51, 52.

SUMMARY AND FUTURE DIRECTIONS

Resonant x-ray measurements of diffuse scattering from solid-solution alloys is an

emerging technique made possible by intense and tunable 2nd generation synchrotron

sources. The use of three wavelengths to vary the scattering contrast of elements within a

binary alloy can already yield high precision measurements of local chemical order and

chemically specific displacements for binary alloys with elements nearby in the periodic

table. Efforts are now underway to extend resonance techniques to alloys with elements

further apart in the periodic table. A better treatment of second moment and higher order
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displacement scattering is central to extending resonance techniques to most alloys

systems.

Present theoretical calculations  of atomic displacements have concentrated on the

non-transition and non-ferromagnetic metal alloys due to theoretical simplifications.

Since resonance experiments to date have surveyed only the Fe-Ni system at different

elemental concentrations, comparisons to theoretical models is controversial. There is

therefore an urgent need in the immediate future to apply resonance techniques to study

local correlations on a classical system such as Au-Cu. Here for example, diffuse

scattering measurements of displacements in three or more compositions across the phase

diagram are needed to provide an unambiguous test of theoretical insights into local

correlations in alloys.

With the new 3rd generation synchrotron sources now coming on line, experimental

uncertainties will be further reduced due to the ~20 fold increase in flux and smaller

focus size which improves the scattered-beam energy resolution for separation of the

elastic and quasi-elastic scattering from the inelastic scattering.  These sources also make

available high-energy K and L edges which will extend resonance techniques to new

alloys systems. Most helpful would be a way to recover the second and even higher

moments of the static displacements from which distributions of the displacements could

possibly be deduced.  Neutron diffuse scattering measurements can resolve thermal

diffuse scattering, but are impractical for full three-dimensional studies on alloys due to

their limited flux.  However, a combination of both x-ray and neutron scattering could

help resolve thermal from static displacements.  Thus careful calibration of the absolute

intensities, attention to experimental detail and new methodologies will result in local
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correlations with sufficient precise to challenge theoretical models for virtually any alloy

combination.
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