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INTRODUCTION

The concepts of order and disorder are fundamental to understanding the many physical
properties exhibited by various materials.  In general, these concepts are quite ambiguous, but
when applied to a particular circumstance, they often provide needed insight into the relationship
between how the atoms are arranged locally in a material and its bulk properties.  Examples
include phase stability, electrical resistance and magnetism.  In addition, the notion of order vs.
disorder applies equally to equilibrium and non-equilibrium systems.  It is interesting to note that
a chemically disordered material can indeed be the equilibrium phase over a large range of
temperature, pressure and composition.  This phenomenon can be best understood by considering
the competition between short-range and long-range ordering tendencies (which can be
incompatible with one another) together with the constant rearrangement of the atoms resulting
from thermal diffusion (entropy) at elevated temperatures.  Figure 1 shows the FeCr binary alloy
phase diagram1 where the entire phase field denoted as (_Fe,Cr) represents a chemically
disordered structure as the equilibrium phase.

In this paper, we will be concerned with local atomic arrangements in crystalline binary
solid solutions and how information about the local order can be obtained from diffuse x-ray and
neutron scattering measurements.2  For the purposes of this paper, a binary solid solution should
be thought of as a crystal lattice decorated by two atomic species, labeled A and B, which
occupy the atomic sites in such a way that there is no long-range order.  In other words, there is
no overall pattern that determines which kind of atom, A or B, will occupy a particular atomic
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site. The crystal lattice is assumed to be either simple face-centered cubic (fcc) with four atoms
per unit cell or simple body-centered cubic (bcc) with two atoms per unit cell.  However, the
methods presented here can, with some difficulty, be generalized to include other lattice
symmetries.3  These methods can also be applied to extremely complex crystals in cases where
only a small subset of the atomic sites are chemically disordered.

In the development that follows the amount of order present in a system is defined relative
to a completely disordered alloy.  In such a reference alloy the probability distribution describing
which atomic species will occupy a particular atomic site is simply given by the composition.
For example, suppose a lattice is composed of half A atoms and half B atoms.  The chance of
finding an A atom on a given site is 50% and the chance of finding a B atom there is also 50%.
If the composition had been A20B80 then there would be a 20% chance for an A atom and a 80%
chance for a B atom to occupy a given atomic site.  However, such an ideally disordered state is
almost never realized in real alloys.  The type of atom occupying a particular site invariably
influences the distribution of atomic species on neighboring sites due to electronic and/or
magnetic interactions, atomic size mismatch, etc.   This of course introduces short-range
correlations in the chemical order – also referred to as concentration fluctuations in the
formalism developed by Krivoglaz.4  There are two distinct ordering tendencies that can arise
from these short-range chemical correlations.  The first occurs if the probability of finding unlike
pairs of atoms occupying adjacent atomic sites is greater than what would be expected in a
completely random alloy with the same composition.  This type of order, if extended to include
longer-range correlations, would ultimately lead to the formation of a supperlattice structure and

Figure 1.   Alloy phase diagram for the Fe-Cr  system.2



is usually referred to as atomic short-range order.  If, on the other hand, the atoms on
neighboring atomic sites are more likely to be of the same atomic species, then the system will
tend toward phase separation.  This type of concentration fluctuations is referred to as clustering.

 Atomic displacements (local static, or frozen, deviations of the atoms from their ideal lattice
sites) usually accompany the concentration fluctuations found in binary solid solutions.  These
displacements violate the lattice symmetry locally but the (cubic) symmetry of the lattice as a
whole must be preserved.  For example, consider the addition of a small number of large atoms,
labeled A, to a lattice of smaller atoms, labeled B.  The lattice will be expanded around the A
atoms which increases the lattice parameter from the value expected for a lattice of only B
atoms.  This introduces the concept of the average lattice where every atom in the crystal can be
thought of as being displaced by a small amount relative to an undistorted lattice.  The lattice
parameter for the solid solution is then taken to be that of the average lattice, which turns out to
be the value one would get by averaging over all of the unit cells in the crystal.  What this simple
picture implies is that AA near neighbor pairs will have a greater separation than that expected
from the lattice parameter and BB near neighbor pairs will have a smaller separation. In general,
a nearly linear response of the lattice parameter to the concentration (e.g. the addition of A
atoms) throughout the solubility range is observed.  This is Vegard’s Law.5  The variation of the
lattice parameter with concentration in substitutional alloying is a long-range effect and has been
well characterized.  The local or near neighbor displacements, however, are not well understood.
The local effect of atomic size is crucial to understanding the behavior of substitutional alloys
since atomic size disparity between the solvent and solute atoms is known to affect solubility as
well as the physical and chemical properties of the alloy.  Several theoretical models have been
proposed the explain the linear relationship between the lattice parameter and concentration.5-7

While these models reproduce the almost linear change in lattice parameter with concentration,
accurate measurements of the local atomic displacements to test these models on an atomic scale
are almost non-existent.

SCATTERING THEORY

As was mentioned above, the diffuse scattering from crystalline solid solutions is sensitive
to both the local concentration fluctuations and static atomic displacements.  Several methods8-10

have been developed to extract the desired information from the diffuse scattering data and the
development presented here borrows from all of them.  Let us begin with intensity at a given
scattering vector Q for a binary alloy expressed by
Where |Q| = 4πsin(θ)/λ, fp and fq denote the complex atomic scattering factor for x-rays or the
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atomic scattering lengths for neutrons, the indices p and q designate lattice sites such that each
sum runs over every atom in the crystal, and rp and rq are the position vectors for those sites.  For
crystals where the Bragg reflections are sharp and the average lattice is well-defined, the atomic
positions can be represented by r = R+δ where R is a lattice vector of the average lattice and δ is
the displacement of the atom from that lattice site. The exponential in Eq. 1 can then be written
as

and the exponential involving the displacements, δ, can be expanded as

where j is an integer.  This series converges rapidly when Q((δp-δq) is sufficiently small.
The total intensity can be separated into the scattering from the average lattice IBragg  and the

scattering that arises from the deviations from the average lattice IDiffuse.  The diffuse scattering
can further be broken down into contributions from the chemical short-range order and
displacements.  Thus by substituting Eqs. 2 and 3 into Eq. 1 we have

IBragg and ISRO correspond to the first term in the expansion shown in Eq. 3, I1SD to the second
term, (iQ•(δp-δq)), and IHOT the remaining higher order terms.  Following the treatment of
Warren and co-workers8,9,11,12  these terms can be written, in electron units per atom, as follows
for a crystal with cubic symmetry

Here N is the total number of atoms in the crystal, cA is the concentration of A atoms, cB is the
concentration of B atoms, lmn  are the Cartesian coordinates13 of the lattice vector R = _(a1l +

a2m + a3n) where a is the cubic lattice parameter) in units of the lattice parameter so that the
single sum over lmn replaces the double sum over p and q, and h1, h2, and h3 are the Cartesian

coordinates of the reciprocal lattice vector (Q = π/2 × (b1h1 + b2h2 + b3h3) where b is the
reciprocal space lattice constant). In the case of a purely random alloy, ISRO(Q) would be given
by
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which is often referred to as the Laue monotonic scattering. The cosine series is just the Fourier
decomposition in reciprocal space of the concentration fluctuations in direct space. The Fourier
coefficients αlmn, also know as the Warren-Cowley short-range order parameters,11  are defined
to be

where         is the conditional probability that there will be a B atom at site lmn if there is an A

atom at the origin.  Thus the parameters αlmn represent the pairwise occupation probabilities
averaged over all symmetry equivalent pairs separated by the corresponding direct space lattice
vector, Rlmn.  Thus only one parameter is required to describe the occupation probabilities for
each type of neighbor, lmn.

Figure 2 illustrates the three possible types of concentration fluctuations and their
contribution to the total scattering.  Three separate computer models of an A50B50 bcc alloy were
generated.  One with the first nearest neighbor α111 = 0.2 indicating that A atoms are 10% more
likely to have A atoms for first nearest neighbors than is expected from the composition and
likewise for B atoms.  This is referred to as 10% clustering.  One where all the αlmn = 0.0, which
corresponds to a completely random alloy. And finally one where α111 = -0.2 indicating that A
atoms are 10% more likely to have B atoms as first nearest neighbors and likewise for A atoms
as first nearest neighbors of B atoms and is referred to as 10% ordering.  All three models were
produced by a reverse Monte Carlo technique.14  For the 10% clustering and 10% ordering
models the αlmn’s beyond the first neighbor shell were unspecified and thus have whatever value
they had when convergence was achieved for the specified value for α111.  The first column in
Fig. 2 shows a 110 plane extracted from each model.  One can clearly see the difference between
the various types of order.  The right hand column shows the 100 reciprocal space plane for the
10% clustering and 10% ordering models.  Only contributions from ISRO(Q) are shown.  The
random model is omitted because it is featureless.  The most important feature to notice is that
the diffuse scattering peaks are at the Bragg peak positions for clustering systems and at the
supperlattice positions for ordering systems.  This fundamental change in the diffraction pattern
means that it is usually readily apparent what type of concentration fluctuations are present.  The

for the 10% clustering and 10% ordering models are shown in the center of the right had
column.  Note how the values for the        fall off rapidly with increasing distance reflecting

the short-range nature of the concentration fluctuations.
The first order term in the displacements, I(Q)1SD, is often referred to as the “size effect’’

scattering.  The displacement parameters, γlmn, are also a pairwise average over all symmetry
equivalent pairs, see Fig. 3.  Each γlmn is a linear combination of the species dependent average
pairwise displacements,         and         , given by
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where Re() denotes the real part of the ratio of complex scattering factors.  It should be noted
that it is the individual components of the displacements that are averaged of all the symmetry
equivalent pairs in the crystal such that

and
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Figure 2.  Direct and reciprocal space representations for a clustering, a random, and an ordering A50B50 bcc
alloy.
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The existence of an average lattice requires that the weighted average of the displacements for all
AA, AB, BA, and BB pairs for each coordination shell must be zero.  Thus, given that
the displacement terms involving AB pairs have been removed from Eq. 10 by
applying the average lattice constraint

No assumption has been made as to how the displacements are distributed about the average.
This information is contained in IHOT(Q).  In order to evaluate IHOT(Q) we make the assumption
that either the quadratic and higher order terms in the series expansion of the thermal and static
displacements are the same for AA, AB and BB atom pairs or that the different elements have
nearly the same atomic scattering factors.15-18  If  either of these assumptions is valid we can
write IHOT(Q) as

The first term in Eq. 13 reduces the intensity of the Bragg peaks and distributes this intensity as
thermal and static diffuse scattering.  This corresponds to the usual Debye-Waller factor
commonly used by crystallographers.   The second term in Eq. 13 reduces the intensity
associated with the chemical ordering.  This term has been treated by Walker and Keating19 and
is included as a Debye-Waller like factor e-2MΦ

lmn in Eq. 6.
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Figure 3.  Schematic diagram showing a particular displacement, δlmn,.  It is important to remember that the
displacement parameters from Eqs. 10 and 11 correspond the to the average of each component of this
vector over all symmetry equivalent lmn pairs in the crystal.
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EXPERIMENTAL METHODS

In most cases the statistical quality of the data and the presence of systematic error make it
difficult tp recover of any information from IHOT(Q).  Thus the usual strategy is to try and
separate the ISRO(Q) + I1SD(Q) contributions from ITotal(Q).  For diffuse neutron scattering this
can be done when the data are collected by utilizing an energy analyzer to remove all but the
elastic scattering from the diffracted beam.  The elastic contribution to the scattering from
IHOT(Q) is assumed to be small and is simply ignored.

For diffuse x-ray scattering the situation is more complicated.  In the past about all one
could do was to calculate the thermal diffuse scattering and subtract it from the data.  More
recently, the availability of x-ray synchrotron sources has made it possible to tune the incident
energy of the x-rays so as to vary the scattering contrast between the two atomic species.  This
technique takes advantage of the anomalous dispersion that occurs when the incident x-ray
energy is near an x-ray absorption edge of one of the two atomic species.10  The two
contributions to ITotal(Q) of interest, ISRO(Q) and I1SD(Q), are strongly dependent on the scattering
contrast, ∆f = fA – fB, see Eq. 6 and 7.  Thus, one can measure the diffuse intensity at two
scattering contrasts; one where ∆f is large and one where ∆f is small.  The data where ∆f is small
will contain little or no contribution from ISRO(Q) or I1SD(Q) so it can be rescaled to the average
scattering per atom at the x-ray energy where ∆f is large and then subtracted away leaving only
the contrast dependent contribution at that energy.15  The contrast dependent part of IHOT(Q) also
remains, but this is taken to be small and is ignored in much the same way as for diffuse neutron
scattering.  In both x-ray and neutron diffraction the Bragg intensity is simply omitted since it
only occurs at a few points in reciprocal space.

Once ISRO(Q) + I1SD(Q) has been separated from the total scattering, Eqs. 6 and 7 can be fit
to the data whether it comes from x-ray or neutron diffraction.  Because ISRO(Q) has even
symmetry and I1SD(Q) has odd symmetry the least squares problem is well conditioned so that
one should expect little or no interdependence between the αlmn’s and the γlmn’s.  This is in spite
of the fact that αlmn appears explicitly in the expression for γlmn in Eq. 10.  The “coupling
factors”, Φlmn, in Eq. 6 can be evaluated using various approximations for phonon dispersion in
the alloy.11,20  The leading term Φ000 = 0 for x-ray diffuse scattering where the instantaneous
correlation function is measured but not for elastic neutron scattering where Φ000 ≈ 1.  Typically,
the approximation Φ000 ≈ 1 is also made for lmn ≠ 0 for both x-rays and neutrons.21

With only one data set where the scattering contrast, ∆f, is large one can only determine the
γlmn’s but not the species dependent atomic displacement parameters,       .  In order to extract the
species dependent parameters, at least one additional high contrast data set is required where the
scattering contrast is substantially different from the first.  If possible one should attempt to have
fA > fB for one contrast and fB > fA for the other.  This can be achieved with x-rays in exactly the
same way as described above for large and small ∆f, and by isotopic substitution using neutrons.
Quite often at least one of the atomic species will not have an absorption edge within the
accessible x-ray energy range available at the synchrotron, and there are no isotopes available
(often they are simply too expensive) for use in a neutron diffuse scattering measurement.  In this
case one should consider using a combination of x-ray and neutron diffuse scattering data to get
the required change in scattering contrast.  Once the two large scattering contrast data sets are
ready, the       and      , can  be  obtained  directly  from  the  least  squares  analysis  by
substituting Eq. 10 into Eq. 7.
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EXAMPLE: FeCr

The FeCr binary system22 exhibits a bcc solid solution (α-FeCr, see Fig. 1) over a wide
temperature and concentration range.  At ∼1100K, a structural transformation to the σ-phase, a
complex close-packed Frank-Kaspar phase, occurs.  According to thermodynamic
evaluations22,23 the σ-phase decomposes below ∼700K into Fe-rich and Cr-rich bcc phases.
Since the bcc to σ transformation is very sluggish, a metastable miscibility gap for α-FeCr is
observed well above this decomposition temperature.  One might expect the local order in the
bcc phase to reveal a tendency toward phase separation.  However, there is also the alternative
possibility that directly above the σ-phase equilibrium boundary the local atomic arrangements
might reflect the incipient σ-phase formation through premonitory fluctuations.  In alloy systems
such premonitory fluctuations can, for example, include atomic short-range order as well as local
atomic displacements.

A single crystal of Fe53Cr47 was grown at the Materials Preparation Lab, Ames Laboratory,
Iowa State University by L. L. Jones using a Bridgeman technique. The purity of the alloying
elements was 99.95% and 99.996% for Fe and Cr, respectively, and the Cr concentration was
determined by chemical analysis to be 47.2%.  The crystal was roughly cylindrical in shape with
a diameter of 12mm and a length of ∼20mm. After a homogenization anneal at 1600K the crystal
was held at 1108K (5K above the σ-phase transition temperature, see Fig. 1) for four days in a
sealed quartz tube under a purified argon atmosphere then water-quenched. Extensive small-
angle neutron scattering studies24 of quenched and annealed α-FeCr alloys indicate that such a
quench will preserve the high temperature equilibrium configurational order.  Small angle
neutron scattering was used to verify that this was the case for our sample.

The X-ray scattering experiment16 was performed on the ORNL beamline X-14A25 of the
National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.   The
measurements were done using three different energies for the incident x-rays: (i) E=5.969 keV
(20eV below the Cr K absorption edge).  This energy was chosen to maximize the scattering
contrast between Cr and Fe and thus enhance the contribution from the local order in the crystal.
We refer to it as the “Cr edge”.  (ii) E=7.092keV (20eV below the Fe K absorption edge).  At
this energy fCr >fFe, i.e. Cr becomes a stronger scatterer that Fe and we shall refer to it as the “Fe
edge”.   This contrast inversion affects the sign of I1SD(Q), see Eqs. 7 and 10.  Therefore, a
comparison of the data measured with the “Fe edge” energy with those measured with the “Cr
edge” energy highlights the “size effect” scattering.  (iii) E=7.600keV.  This choice minimizes
the scattering contrast whereby the ISRO(Q) + I1SD(Q) contribution to the total intensity are small,
thus the measured intensity is predominately due to IBragg(Q) + IHOT(Q).  Figure 4 shows the
range of contrast variation obtained during the measurement.  Note the greatly enhanced |∆f|2 at
the “Cr edge” as compared with |∆Z|2 = 4 without the anomalous dispersion, and the |∆f|2  small
for E=7.600keV.



Figure 4. |∆f|2 as a function of sinθ/λ for the three x-ray energies used.

The results of the least-squares analysis are listed in Tables I and II.  The first eleven αlmn’s
are positive indicating a preference for like neighbors (Fe-Fe and Cr-Cr pairs), i.e. this is a
clustering system.  For example, α111 = 0.16 means that the probability of finding an Fe atom in
the nearest neighbor shell of another Fe atom is 60.5% as compared to 52.8% (=cFe) for a totally
random alloy.  Given the high concentration of this alloy, the αlmn are rather small and so the
clustering tendency is not very pronounced.  According to anomalous x-ray diffraction studies by
Yankel,26  σ-FeCr is partially long-range ordered,  i.e. there are sublattices which are
preferentially filled with Fe or Cr.  For every interatomic vector connecting points in two
different sublattices, the corresponding αlmn must be negative.  Evidently, the positive αlmn’s of
the bcc solid solution above Tσ do not reflect the local chemical order found in the σ-phase.

From Table II  we see that most  of the components of       are negative.  Therefore most of
the average Fe-Fe separations (in particular those for the first three neighbor shells) are smaller
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than the corresponding average lattice distances.  This is compatible with the observed decrease
of the lattice parameter with increasing Fe concentration.  However, the comparatively large
negative value of the nearest neighbor Cr-Cr displacement shows that the concentration
dependence of the lattice parameter is not necessarily reflected in a simple way in the local
atomic distortions, i.e. from Vegard’s Law one would expect the first nearest neighbor
displacements to be positive!  Nevertheless, the        are on the average more positive than the

.   Thus the data suggest that taken over a sufficiently large local volume, the Cr atoms are
indeed “bigger” than the Fe atoms.  The average Cr-Cr nearest neighbor distance is 0.4% smaller
and the average Cr-Cr next nearest neighbor distance is 0.3% larger than the corresponding
average lattice separations.  By comparison, the lattice parameter of pure Cr is 0.6% larger than
the lattice parameter of pure Fe.  It is also interesting to note that the root-mean-square static
displacement amounts to only about ∼3% of the root-mean-square thermal displacement.

Table I.  Short-range order parameters αlmn.

lmn αlmn lmn αlmn

0 0 0 1.1806(23) 3 3 3 0.0051(8)
1 1 1 0.1596(14) 5 1 1 0.0025(6)
2 0 0 0.0691(14) 4 4 0 -0.006(7)
2 2 0 0.0455(11) 5 3 1 0.0016(4)
3 1 1 0.0217(10) 4 4 2 0.0022(5)
2 2 2 0.0253(11) 6 0 0 -0.0020(8)
4 0 0 0.0036(11) 6 2 0 0.0009(4)
3 3 1 0.0074(8) 5 3 3 0.0009(4)
4 2 0 0.0074(7) 6 2 2 0.0010(4)
4 2 2 0.0043(7) 4 4 4 0.0007(7)

Table II.  Species dependent displacement parameters ∆lmn = (∆xlmn, ∆ylmn, ∆zlmn) in Å.  The Fe-
Cr displacements can be obtained from Eq. 12.

lmn

1 1 1 -0.00070 (4) -0.00070(4) -0.00070(4) -0.0019(5) -0.0019(5) -0.0019(5)
2 0 0 -0.00029(9) 0.00000 0.00000 0.00268(12) 0.00000 0.00000
2 2 0 -0.00022(4) -0.00022(4) 0.00000 -0.00050(6) -0.00050(6) 0.00000
3 1 1 0.00018(5) -0.00022(3) -0.00022(3) -0.00007(6) 0.00011(4) 0.00011(4)
2 2 2 -0.00053(5) -0.00053(5) -0.00053(5) 0.00039(6) 0.00039(6) 0.00039(6)
4 0 0 0.00009(9) 0.00000 0.00000 0.00063(13) 0.00000 0.00000
3 3 1 -0.00013(4) -0.00013(4) -0.00005(4) 0.00016(4) 0.00016(4) -0.00005(6)

Figure 5 compares the measured intensities in the (h1, h2, 0) plane (after subtracting the
E=7.600keV data) with those reconstructed from the from the parameters in Tables I and II.  The
increase in the intensity near the Bragg positions and the details of the intensity in the zone
boundary regions are well reproduced.  These modulations are largely due to the “size effect”
scattering as can be inferred from the systematic differences between the “Cr edge” and the “Fe
edge” data.  For example, the “dip” near 210 in the “Cr edge” data which becomes a local
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maximum in the “Fe edge” data, both of which may be related to a measurable zone boundary
softness in the [100]L phonon branch.27

Figure 5.  Measured and reconstructed intensities in the (h1, h2, 0) plane in electron units for the “Cr edge” and “Fe
edge”.

The measured intensity is compared with the results of the least-squares refinement along
the <hhh> direction in Fig. 6.  The intensity minimum around h=0.8 in the “Cr edge” data and
the maximum around h=0.7 in the “Fe edge” data are caused by the “size effect” modulation and
are related to the dip at 2/3(111) in the [111]L phonon branch.  The difference in there positions
can be explained by considering the ISRO(Q) which peaks at the origin, h=0, and therefore will
shift a “size effect”-induced minimum towards a higher h value, where as a maximum will be
shifted towards lower h.  The same arguments apply to the maximum near 4/3(111) in the “Cr
edge” data and the corresponding minimum in the “Fe edge” data.  This peaking of the static



diffuse scattering at the 2/3(111) and 4/3(111) is a direct consequence of the elastic softness of
the bcc lattice in response to distortions in these directions as evidenced by the 2/3[111] dip in
the [111]L phonon.  Since the restoring force if the lattice to this particular displacement is
relatively weak, the atoms are preferentially displaced in these directions.  This is clear evidence
for the coupling between the static displacements and the elastic response of the lattice.

 Figure 6. Measured and reconstructed intensities in the <hhh> direction.  (a) “Cr edge”, (b) “Fe edge”.



CONCLUSION

It has been demonstrated that accurate occupational probabilities and first order static
displacements can be obtained from diffuse scattering measurements.  It is quite remarkable that
species dependent atomic displacements on the order of 0.001Å and smaller can be determined
from such broad features in the diffraction pattern.  The availability of this information will
provide theorists with the means to test their models and challenge them to include static
displacements in their ab initio calculations of phase stability.  In even more general terms,
knowledge about the local atomic arrangements will help us to understand the connection
between local structure and bulk properties.
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